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Abstract

In this thesis we review a recently discovered technique to give an alternative, equivalent expression
for a given path integral, by finding a suitable alternative integration cycle. These alternative cycles
are dubbed exotic and are found by exploiting basic properties of Morse theory in finite dimension
and its generalizations to infinite dimensions. Combining this with supersymmetric localization and
topological formulations of supersymmetry, this leads to a new duality between quantum mechanics
and the topological A-model; this new point of view is related to the A-model view on quantization of
classical systems. We discuss explicitly the subtle details in applying this technique to the harmonic
oscillator. Another application of exotic cycles is to establish a new duality between Chern-Simons
theory and topological A = 4 super Yang-Mills. Embedding this system in type 11B superstring theory,
using this duality and non-perturbative string dualities one can then give a conjectural gauge theory
description of Khovanov homology. Furthermore, different facets and applications of exotic cycles will
be discussed, as well as closely related current developments in mathematical physics, such as the role
of S-duality and modularity in Chern-Simons theory.
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1

INTRODUCTION

Fundamental physics has had a long and fruitful interplay with pure mathematics, most notably, with
the area of geometry. The canonical example is of course general relativity, which is an entirely geometric
theory. However, quantum field theory provided a slight kink in this marriage, as the path integral of
quantum field theory cannot be described rigorously using existing techniques, although being highly
successful as a phenomenological model. Despite this drawback, more and more links between geometry
and field theory have been established, provoking a renewed mathematical interest in the subject.

One of the starting points to understand the new connections between geometry and physics is the
insight in 1982 that a complete physical description of Morse theory could be given in terms of super-
symmetric quantum mechanics. This connected two, until then completely disparate, areas of science.
Morse theory is concerned with the topological structure of smooth manifolds, whereas supersymmetry
was primarily invented as an elegant extension of the Standard Model of elementary particles to combat
the hierarchy problem.

Gauge theory, the mathematical framework of the Standard Model and its supersymmetric extensions
has also been key in modern developments. Especially, supersymmetric gauge theory has been proven
to calculate 4-manifold invariants, called Donaldson invariants, incorporating novel mathematical tech-
niques, such as Floer theory. This provides another link between geometry and physics.

Another major stimulus for mathematical physics was the introduction of string theory, a mathematical
model that provides a description of quantum gravity. Although its physical relevance remains partly to
be seen, its mathematical virtues has already sparked a hausse of interest among mathematicians, since
string theory has given rise to entirely new well-defined questions and areas of mathematics, moreover,
has sometimes already provided answers where mathematicians had not. Especially, simplified versions
of the physical string, the topological A and B-string that do not depend on the worldsheet metric, can
be linked to counting holomorphic curves and the geometry of Calabi-Yau manifolds.

Finally, one of the most profound insights and examples is the connection that was made between 3-
dimensional topological gauge theory and the computation of knot invariants. In 1989 it was shown that
3-dimensional Chern-Simons theory is completely non-perturbatively solvable through a dual description
in terms of 2-dimensional conformal field theory. Moreover, one can prove in this description that Chern-
Simons theory exactly computes knot polynomials. These objects are topological invariants associated to
knots and links in 3 dimensions, which before were only known to mathematicians as purely algebraic
constructions, from which topological invariance was not manifest. However, Chern-Simons theory gives
an intrinsically topological description.

Hopefully, this is ample evidence that differential geometry and physics are tightly intertwined and de-
serve detailed scrutiny.

In this thesis the central theme is a recently introduced ‘exotic duality’ in topological gauge theory, which
relates the path integrals of two completely different physical theories. Schematically, the exotic duality
connects:

d-dimensional open supersymmetric o-models <— d — 1-dimensional field theory.

The salient features of this duality are that it relates a supersymmetric theory to one that is not; moreover,
it relates theories defined in different dimensions. Here ‘open’ refers to the o-model with a boundary.
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Roughly speaking, the exotic duality implies that the d-dimensional bulk theory reduces in the semi-
classical limit to the dual theory, that lives on the boundary of the open c-model. One of the intuitive
explanations for the holographic nature of this duality comes from the appearance of Stokes’ theorem in
some parts of the construction: in nice situations, bulk behavior can be captured by data on the boundary.

To explain how this duality works, we need three main ingredients:
e Supersymmetric localization
e Topological field theory
e Morse theory

Supersymmetric localization is one of the fundamental reasons that supersymmetric field theory is quite
elegant: supersymmetric path integrals simplify significantly as they can be evaluated by only consider-
ing certain fixed points of the supersymmetric theory.

Topological field theories are theories that are independent of the metric on the space-time on which they
are defined. We shall discuss the two main classes of topological field theory: the first exploits a trick
called twisting in order to define supersymmetry on curved space-times. For 2-dimensional o-models,
this results in the so-called A and B-model. The second class uses a metric-independent Lagrangian,
which guarantees classical topological invariance; the canonical example is Chern-Simons theory.

Lastly, Morse theory studies the behavior of scalar functions on curved manifolds to describe their topol-
ogy and differential structure. For instance, one can use the gradient flow of scalar functions to obtain
bounds on the dimensions of the cohomology of a manifold. Most importantly, the nice behavior of scalar
functions under gradient flow will be central in setting up the new duality.

While we will mostly use low and finite dimensional toy models to illustrate the power of these tech-
niques, the most interesting applications require a formal generalization to infinite-dimensional manifolds
to obtain the most interesting results. In order to do so, one needs to generalize the finite-dimensional
Morse techniques to the infinite Floer theory techniques. However, this step is fraught with a lot of math-
ematical analysis, while not providing new relevant concepts. Therefore, in this thesis we shall mainly
forego all the technical details that would be needed to set up Floer theory and instead argue informally
why the finite-dimensional concepts generalize in a well-defined manner to the infinite-dimensional set-
ting, by exploiting the elliptic nature of the relevant equations.

With this proviso, the first application that we describe is the duality between the

2-dimensional open A-model <— 1-dimensional quantum mechanics.

This duality will lead among others to a new view on quantization of classical theories. We shall illustrate
in detail what the various subtleties are in applying this duality to the simple harmonic oscillator.

A-model quantization offers a new point of view on the inherently ambiguous process of ‘quantization’:
there is no unique and completely systematic way to go from a given classical system to its quan-
tum counterpart, even when the classical phase space is topologically trivial. When the phase space
is topological non-trivial, things are even worse. These issues are relevant, for instance, in Chern-Simons
theory which for compact G has a non-ambiguous complete quantization through its connection with
2-dimensional conformal field theory. This feature is key to solve it completely. However, when G is
non-compact, the Chern-Simons phase space becomes highly non-trivial and non-compact, and its quan-
tization is still mysterious. The latter situation would be physically interesting as it can be related to
2 4 1-dimensional quantum gravity, mathematically one would like to understand knot invariants for
non-compact G.

The second application of exotic integration cycles is to establish a bulk-boundary duality: we relate

4-dimensional twisted A/ = 4 super Yang-Mills +— 3-dimensional Chern-Simons theory,
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with the former in the bulk and the latter on its boundary. Together with its embedding in superstring
theory, applying non-perturbative string dualities will lead to a new view on the Jones polynomial and
on its categorification, known as Khovanov homology. Categorification refines knot invariants by assign-
ing to a knot vector spaces, instead of numbers. This process generates a stronger knot invariant than
the Jones polynomial, since categorification provides a richer algebraic structure. The essential point is
that topological invariance of Khovanov homology is again not manifest: mathematicians only know an
algebraic description of these knot invariants. The new exotic duality now proposes a gauge theoretic
description of Khovanov homology, which does make topological invariance manifest.

We shall see that the exotic cycles establish a new link in a cascade of dual theories in consecutive
dimensions, exemplifying the richness of topological gauge theory.

Figure 1: The cascade of gauge theories, each linked by duality relations. We have Wess-
Zumino-Witten theory on ), Chern-Simons theory on M3, dM3 = X, twisted N’ = 4 super
Yang-Mills on Z; = M3 x R_, twisted super Yang-Mills on Y5 = M3 x R_ x S, the (0,2)
CFT on Xg = M3 x Dy x S, where D; is topologically R? = S x R_, but inherits the circle
fiber scaling of the Taub-NUT space T (see (10.2.1)). The first arrow is discussed in chapter 7,
the last one in chapter 10 and the others in chapter 8.

We start in chapter 2 with a discussion of the basics of supersymmetric gauge theory on flat space-times
and a key feature of supersymmetry: localization. In chapter 3 we will discuss how to extend supersym-
metry to curved space-times by using the topological twist, which gives a topological field theory (TFT)
that possess topological supersymmetry. We will discuss the key properties of TFTs and the so-called
closed and open A-model as the main example.

In chapter 4 we discuss how to find alternative integration cycles for path integrals in low-dimensional
QFT in chapter 4. In chapter 5 we expand these ideas to include gauge symmetry. Up to this point, we
will mostly illustrate the techniques by applying them to toy models, such as 0-dimensional QFT.

Having then established the three main tools we will use, in chapter 6 we will use them to see how we
can find a dual description of the path integral of quantum mechanics; this involves a generalization in
which the relevant spaces, on which we apply Morse theory, will be infinite-dimensional. As an example,
we will discuss in detail how this duality works for the simple harmonic oscillator.

We then continue with a discussion of Chern-Simons theory in chapter 7, before we show how the same
techniques establish a duality between Chern-Simons theory on a boundary dV and twisted N' = 4
SYM in the bulk V in chapter 8. The motivation for this is to describe a conjecture for a gauge theory
description of Khovanov homology, which is discussed in chapter 9. In chapter 10 we then end with a
discussion of the implications of this new duality and current developments that are tightly intertwined
with the two examples we discussed in chapter 6 and 8.
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Since the topic of this thesis lies in the intersection of mathematics and physics, some (limited) math-
ematical background is needed. In an attempt to make this somewhat self-contained, some relevant
material is briefly discussed in appendix A, with references to complete treatments: rigorous proofs can
be found there, which we will forego here. Moreover, a short discussion of the relation of Morse theory
and supersymmetric vacua can be found in appendix C. Some knowledge of differential geometry, basic
algebraic topology, quantum field theory and superstring theory will be assumed.
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SUPERSYMMETRIC GAUGE THEORY

The pillars of modern fundamental physics, general relativity and quantum field theory, can entirely be
described in terms of differential geometry; especially, they can be entirely formulated in the language of
fiber bundles. The structure of quantum field theory in particular is centered on the notion of symmetry
(and the breaking thereof), which is encoded in the structure group of fiber bundles where physical fields
live in. Such field theories are called gauge theories, we will take a look at one of the most important
examples: Yang-Mills theory.

Another cornerstone of the link between geometry and physics is supersymmetry, which plays an essen-
tial role throughout. Here we will discuss supersymmetric gauge theory, viz. super Yang-Mills theory,
and the main reason for the power of supersymmetry: the localization phenomenon. The latter will be
used throughout the rest of our story.

2.1 Gauge theory

Let G be a compact Lie group and consider a principal G-bundle E — M on an n-dimensional man-
ifold M. We can think of M as playing the role of spacetime, but with possible non-trivial topology.
We shall mainly work with manifolds with Euclidean signature. The structure group G is also called
the gauge group. A connection 1-form A on the bundle is called the gauge field, and is a generalization
of the familiar gauge potential of electromagnetism. Physical fields on M correspond to sections of the
principal fiber E in a certain representation of G and the associated action of G on these sections and the
connection are called gauge transformations. Physically, in gauge theories the gauge group G represents
a redundancy in the system: there is an infinite number of equivalent descriptions of the same physical
system.

The way G acts on fields depends on the representation the fields are in: if the physical fields sit in the
fundamental representation, the group G acts by left multiplication: ¢ SN g¢. If the fields sit in the ad-

joint representation, the group G acts by conjugation: ¢ R g¢g~ L. On fiber bundles one can introduce
a connection: a derivation D that allows us to compare objects in the fiber bundle over different points
in M. Such a connection can be written as an operation on forms D = d + A, where d is the de Rham
differential and A is a g-valued 1-form on M. This last means that A is an element of Q! (M, g) or more
concretely, A can be written as A = A?T“dxi, where T? € g are generators of the group G.

Under a gauge transformation, the gauge field A transforms as A — gAg~! —dgg™!. This is to ensure
that the covariant derivative transforms naturally; if i is a section in the fundamental representation of
the principal G-bundle, under a gauge transformation

D(gp) =d(gp) + (A~ gy — dgg™")(gy) = dgy + gdy + g Ay — dgyp = g(dp + Ay) = gDy.
(2.1.1)
so D1 transforms as a section in the fundamental representation too. This requirement on the covariant
derivative can be physically understood by the requirement that the kinetic energy term (D”gb)2 remains
invariant under gauge transformations.

The way D operates on sections of E depends on the representation they sit in. As the most common
example, if § sits in the fundamental representation, then the 1-form A acts by left multiplication: Dy =
dy + A. If ¢/ sits in the adjoint representation, the covariant derivative acts on ¢’ by the adjoint action
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ong: DY = dy' +ad(A)y = dy' +[A,¢'], where [a,b] = a Ab — (—1)982de8bp A g is the graded
bracket for Lie algebra valued forms. When we write D, we shall assume that this behavior is understood.

Non-abelian Yang-Mills theory and instantons

The example we consider is non-abelian gauge theory on R*, which describes a system of interacting
gauge bosons. Here the gauge group G is a semisimple compact Lie group whose Lie algebra g has
antihermitian generators {T?,a = 1...dim G} that obey the familiar relation [T?, Tb] = f”bc T¢.* Here
the f”bc are the structure constants of the Lie algebra g and are totally antisymmetric. The curvature
2-form of the connection D), = ay + /\T”A;ll is in index notation

dim G dim G be Ab
Fuo =D D)= Y F,T%  Fi, =0,A, —0,AL+A Y fUALA (2.1.2)
a=1 b,c=1

where A is the Yang-Mills coupling constant. One way to interpret F is that it measures to what degree
the covariant derivative fails to be nilpotent. Under a local gauge transformation A — gAg™! —dgg ™1,
the curvature is conjugated F — ¢Fg ™!, which can be checked by a straightforward calculation.For
brevity, we leave the sum over the index a implicit. We conclude from this that flatness F = 0 of a con-
nection is preserved under gauge transformations. Therefore, we can divide the space of flat connections
by gauge transformations, the resulting quotient is the moduli space of flat connections. We shall return
to this subject in chapter 7. The action for this system is given by

1 s 1
Sym = —W/wd xir (FyF') = _W/w tr (F A +F). (2.1.3)

This is an intrinsically interacting system: the coupling constants of the cubic and the quartic interactions
for the gauge boson are entirely determined by the structure constants of the Lie algebra. The equation
of motion and Bianchi identity for A then become

D(xF) =0, DF =0. (2.1.4)
The Bianchi identity is automatic; computing the exterior derivative of F:

dF = PA+dANA—ANAA=(F-ANAYNA—AN(F—ANA)
= FAA—AANF=—(AANF—(-1)2FAA) = —[AF].

Here we have to use the graded Lie bracket for g-valued p-forms [a,b] = a A b — (—1)9e82degbp p g,
The equations in (2.1.4) imply that a connection with self-dual or anti-self-dual curvature 2-form, sat-
isfying xF = +F, automatically satisfies the equations of motion. Such classical solutions have finite
energy and are known as instantons (+ sign) or anti-instantons (- sign). This is our first encounter with
such solutions and we will see that they play an important role throughout the rest of this thesis. To see
that Yang-Mills instantons have finite energy, we add a topological 6 term
i FAF

gz T (FAF) (2.1.5)
to the Lagrangian. This term is a total derivative, as will be shown in chapter 7 and hence only adds a
constant to the action and does not change the equations of motion. It now follows from the Schwarz

inequality |<x,y>|2 < (x,x)(y,y) that

/tr(FAF): (/tr(F/\F)/tr(*F/\*F))% > ‘/tr(FA*F)

where we used that («, ) = [ tr (a A %B) is an inner product on 2-forms and *a A % = a A 8 for 2-
forms on IR*. We see that the energy of an instanton is bounded by its winding number, and the bound is

, (2.1.6)

* There are two choices one can make in defining the generators T”: either they are hermitian or anti-hermitian. In the previous
notation, the covariant derivative was anti-hermitian, which is standard practice in mathematics. If the generators are hermitian,
the covariant derivative should be written as D = d — iA etc, which is more standard in physics. We shall mainly use the
anti-hermitian convention, since it will get rid of irrelevant i’s in formulas.
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saturated only for instantons. The instanton equations F* = %(F F «xF) = 0 are called the self-duality
(+) or anti-self-duality (—) equations. From a mathematical point of view, they are first-order elliptic
(see for instance [1]), but non-linear, equations, which makes their analysis non-trivial. It is conventional
to define the coupling constant

= i @ (2 1 7)
C2m 0 A2 o
so that the action can be written as
iT iT
S :—/F*/\F+ —/F*/\F*. 2.1.8
YM =g e (2.1.8)

The important observation is that the 8-term computes topological information, since F is the curvature
of a connection A on a principal G-bundle E — M. Through the definition of the total Chern class

¢(E) = det (1 + tzll;) = t*ci(E), (2.1.9)

F is identified with the first Chern class ¢;(M) = L. Each Chern class ci(E) sits in an integral coho-
mology class HK(M, Z): it follows that integrals over (powers of) ck(M) result in integer values. The

geometric interpretation of the topological 0-term

0 2 0 2
S?/MtrF/\F: _4r S?/Mtrcl(E) €z (2.1.10)

is that it computes the winding number of the associated gauge field A. The normalization of the trace is
chosen in such a way that the winding numbers are integers. The winding number reflects the fact that
not all gauge field configurations are homotopically equivalent to the trivial gauge field, it measures the
degree in which such a non-trivial gauge field is ‘twisted’.

2.2 Aspects of supersymmetry

Supersymmetry extends the standard Poincaré symmetry of d + 1-dimensional space-time with fermionic
symmetries, extending the symmetry group of space-time to the super-Poincaré symmetry group. By the
Coleman-Mandula theorem, which states that the only conserved quantities in any viable quantum field
theory with a mass gap are Lorentz scalars, extra fermionic symmetries are the only possible extension.
Conventionally, the fermionic generators of the extra symmetries are denoted by Grassmann numbers

Qf,@g = Q'IY, and the associated parameters are spinors €A% Here T* are d + 1-dimensional T-
matrices that satisfy {I'*,TV} = 2y"”. Grouping these into fermionic raising and lowering operators
T#+, spinors sit in representations of this fermionic oscillator algebra. The &, B denote d + 1-dimensional
spinor indices and the A = 1...N is an R-symmetry index, labeling the family of supersymmetry
generators. R-symmetry is given by a U(N) symmetry group that rotates the supercharges amongst
themselves. We take the sign convention (—,+,+,...). The supersymmetry generators satisfy the
following defining relation:

{Qf,éﬁ} = —204Pr% P, —2i7"B5,5,  [Q4,P¥] =0. (2.2.1)

Here P, is the generator of space-time translations, . = 0, ..., d denotes space-time Lorentz indices and
ZAB is an antisymmetric matrix of central charges. We shall mostly set ZAB = 0. Physical states of
the theory sit in representations of the supersymmetry group, which are called supermultiplets. In each
supermultiplet, there are equal numbers of bosonic and fermionic states on-shell and off-shell, where in

the latter case auxiliary fields must be added to enforce the balance.

To study (2.2.1) in slightly more detail, we can consider how massless multiplets arise. First, we rewrite
(2.2.1) as

{Q, (QNE} = —26F (M) Py (2.2.2)
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In the massless case, one can go to the frame where P* = (P, P,...), upon which the right-hand side
becomes the projection operator 2648 (1 + rorl)aﬁ, which vanishes on half of all particle states.S We

see that half of the Qs vanish, then the remaining Q can be split into nilpotent raising and lowering op-
erators. To go from spin 2 to spin —2, one needs 8 lowering operators; there is no consistent way to write
down a field theory for particles with spin larger than 2. Hence, the largest number of real supercharges
is 32. For instance, in four dimensions, the supersymmetry generators are Weyl spinors with four real
components. Hence, in four dimensions N can be at most 8. Similar considerations hold for massive mul-
tiplets: there one finds 2 copies of the fermionic oscillator algebra, which doubles the number of states
in the supermultiplets. The details of these constructions can be found for instance in the appendix of [2].

Since the supersymmetry generators Q are fermionic, we need fermions € parametrizing supersymmetry
(as exp €Q has to be bosonic). We shall only consider globally constant supersymmetry parameters €,
which gives so-called rigid supersymmetry. Non-rigid supersymmetry parametrized by local € would lead
to supergravity, as the gauge field for local supersymmetry would be a spin 3/2 particle, a gravitino. To
preserve supersymmetry in that case, one is forced to add spin-2 particles, the gravitons. Since spinors
always exist locally (under the assumption that the space-time is spin), but may fail to be defined globally,
defining supersymmetry on a curved manifold generically is problematic. We will return to this issue in
the next chapter.

Super Yang-Mills theory

Here we discuss maximally supersymmetric super Yang-Mills (SYM) gauge theory, which in four dimen-
sions is precisely N' = 4 SYM. The adjective maximally supersymmetric stems from the fact that in 4
dimensions, Weyl spinors have 4 complex components, and so for N' = 4 supersymmetry generators,
on-shell there are 16 real supersymmetry generators in total. This means that the supermultiplets are as
large as possible without containing spin-2 particles. The reference for this section is [3].

The field content of ' = 4 SYM can be most easily determined from dimensional reduction of N' = 1
SYM in 10 dimensions (although this is not the only possibility, one could also try to determine it by
brute-force). The action of 10-dimensional N' = 1 super Yang-Mills is given by

1 1 _
ho = — / A0y tr <2PUFU — iAFIDIA) (2.2.3)
810

where I,] = 0,...,9 are 10d indices and A is a 10d Majorana-Weyl, chiral real spinor*. Fy is the
curvature of the 10-dimensional gauge field A;. g1¢ is the 10-dimensional Yang-Mills coupling constant.
The covariant derivative acts on spinors as

DyA® = 0,A" + g0 fanc AGAC. (2.2.4)

The generator of supersymmetry is a constant chiral spinor € € S, that obeys T'e = €. Here, S is
the spinor bundle of positive chirality. The fields sit in one supermultiplet (A, A). The supersymmetry

transformations associated to € for any field ® are denoted as 6® = [2316:1 €"Q,, CD} (here [.} denotes

an anti-commutator if ® is fermionic, or commutator if it is bosonic). In this case, they read
0A[ = iel'[A, oA = El" F[](—?, oA = —§€r F]], (2.2.5)

where we define T/ = TT/ (not the antisymmetric product!). Under these supersymmetry transforma-
tions, the action (2.2.3) is invariant up to total derivatives: this follows from properties of Fierz identities

§ This follows from the oscillator algebra: states can represented by their eigenvalues Sy = :t% of the operators S, = THHre= —
%. In particular T9%* = % (£I%+T1). Then T = 28,

*Note that this theory is chiral and therefore suffers from the axial anomaly, which vanishes only for SYM with gauge groups
G = SO(32), Eg x Eg coupled to SUGRA: this is the main reason for the consistency of type | and heterotic superstrings.



2.2 Aspects of supersymmetry 13

in 10 dimensions [3]. The supercurrent associated to supersymmetry of the theory, is the Noether cur-
t
rent

]Izzétr(F”QﬁKF1A> (2.2.6)

Note that the trace here is with respect to the gauge group G. The computations that leads to these
results can be found in volume 1 of [4].

d
Any Dirac spinor in d dimensions has 213l complex degrees of freedom. Imposing a Weyl (chirality) or
Majorana (realness) constraint each cuts down the number of real degrees of freedom by half. Putting the
theory on-shell eliminates yet another half of the degrees of freedom. Hence A has 2 - 27 /8=32/4=28
on-shell real degrees of freedom. Furthermore, there is a gauge field A; with 8 physical polarizations
whose field strength is Fj;. Adding, we see that there are 16 on-shell real degrees of freedom in this
theory.

We now describe the result of dimensional reduction of this theory to 4d, by declaring fields to be only
dependent on X!, T = 0,...3, which means we break the 10-dimensional Lorentz group SO(1,9) —
SO(1,3) x SO(6). The residual SO(6) rotates the internal coordinates, and becomes the R-symmetry
group of the theory: R-symmetry is an internal symmetry. This means that we can set all derivatives
in the 4...9-directions to zero. For the fermionic fields, we have to decompose the 10-dimensional T-
matrices:

Iy = 7, ®1g, wam=%®(w %) (2.2.7)

where the 7, 4 = 0,1,2,3 are the 4-dimensional y-matrices and the 4 X 4 p-matrices are defined by

3 1 ..
(it = €ijer,— (07)i = 57" €. (2.2.8)

The chiral matrix and charge conjugation matrices decompose as
0 I
Lepir = 15 @ 1Ig, Co=C® 4. (2.2.9)
Iy O

Under this decomposition, the 10-dimensional spinor splits up as

i _
A:<M>, - I+7s rR1=7 (2.2.10)

27 2

where X!, %i,i = 1,2,3,4 are chiral Wey! spinors and X' satisfies the Majorana condition §; = Cfi't.
This ensures that A is a 10-dimensional Majorana-Weyl spinor. One then gets that the field content of 4d
N =4SYMis:

e 1 gauge field A*: a vector with 2 physical polarizations ~ 2 real degrees of freedom

e 6 scalars ¢;,i = 1,...6 that can be combined into a spin-0 antisymmetric 2-form ¢;; ~ 6 real
degrees of freedom.

The two form is defined by gof]- = %eijkl o = ¢, @iy = % (Piys + iite)-
e 4 spin-1/2 chiral Weyl spinors: 2 left x™®, 2 right ¥'* ~ 4 x 2 on-shell real degrees of freedom

where the i, are 4d space-time indices. Adding all contributions, we have 16 real degrees of freedom,
exactly the same asin ' = 1d = 10 SYM. By simply inserting the dimensionally reduced versions of the

*We recall the standard result that if the Lagrangian changes under a variation X by L = 0, K¥, then the Noether current is
given by J¥ = (b(g}ibmax - K;,).
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10-dimensional fields into the 10-dimensional Lagrangian, one may check that the action then becomes
(with rescaling):

1 . o .
/d4x tr (2FWF”V — Dyg;iD' @' —ix;o" Dy x’ (2.2.11)

—483 (95, 9l [0, 9] + gax' X, 9] + 8aXi (X 4’17]) (2.2.12)

Here g4 is the 10-dimensional Yang-Mills coupling constant. The supersymmetry variations then reduce
to

SAF = —ixldh e — ielo f:)(]
. 1 . . o P
o = waWe; + 4i(Das ') —88[g, 9)el
g 1
sg" = (x“"eﬁ Kel) + zeMEa

Recall that the R-symmetry of the N' = 4 theory is SO(6)r = SU(4)g, which rotates the 4 4-
dimensional supercharges Q4. R-symmetry rotates the fermions, which sit in a spinor 4 representation
of Spin(6)g = SU(4)R and the 6 scalars ¢; sit in a vector 6, of SO(6)g.*

Here we can also add a supersymmetric topological 6-term, just as in the non-supersymmetric case. Then
the bosonic part of the 4d action, can be written as

/d4xtr< wF' 4+ Dy, 4>1DF‘4>1+ Z i, ¢ ) 892/tr(F/\F) (2.2.13)

1]1

This will be a crucial addition for us, as we will encounter this term throughout the text. It also will be
discussed in more detail in chapter 8, where we will study boundary conditions of super Yang-Mills with
a topological 0-term.

One very important property of the N” = 4 theory is the strong result that its f-function vanishes for all
values of the couplings, implying that the theory is conformal at all energy scales. This is a rather non-
trivial statement, but has been proven perturbatively by Mandelstam and non-perturbatively by Seiberg
[5]. Hence the full symmetry group of N = 4 super Yang-Mills is actually the superconformal group.

2.3 Localization and supersymmetry

The power of supersymmetric theories comes from the underlying principles of localization and deforma-
tion invariance. These phenomena permeate all supersymmetric discussions and account for the elegance
of supersymmetric theories. Let us illustrate this with a toy example.

Consider a 0-dimensional supersymmetric QFT, where the base manifold is 0-dimensional (a point p) and
the target space is R. We define a supersymmetric QFT which has a bosonic scalar field X and two real
Grassmann variables ¢1, p. Then the most general Lagrangian or action (in O dimensions, there is no
distinction) is

S(X, 91, ¢2) = So(X) — 19251 (X). (2.3.1)

The Euclidean path integral reduces to an ordinary integral over the ’variables” X, 1, i»:

z= / dXdprdp exp (—S(X, 1, ) = / X 51 (X) exp (—So(X)) - (23.2)

* The 10-dimensional gauge field Aj transforms as A; — A{A[(A’lx) under 10-dimensional Lorentz transformations. When
we break SO(1,9) — SO(1,3) x SO(6), an ’Lorentz’ transformation takes the form (A 0

0 R)’ and it is straightforward to see
that SO(6) rotates only A, I =4,...9 and A rotatesonly A;, I =0,...3.
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with the convention [ d1doi19p = 1. Let us make a supersymmetric choice for the action

S(X, 1, ¢2) = %(3’1)2 — P11r9*h (2.3.3)
where i = h(X) is some function. Then this action is invariant under the transformations
0X = ep1 + €y, oYy = eah, 0Py = —edh. (2.3.4)
where € is a fermionic parameter. Indeed we have

5(h)? = 20h50h = 20hd(6h) = 20hd(0hdX) = 20hd(dh(e(1 + 1))

= 2(e(y1 + ¢2))0hd*h
5(9%h) = 0%(oh) = °hoX = e(y + 2)°h

from which we obtain

= e(4y + 1) 0hd*h — edh20°h + 1€0hd*h — Pyoe(y + )R
= e(1 + 12)0hd*h — €dhPr0*h — ep10hd*h — ey + )03k = 0.

We can now use the fermionic symmetry to eliminate one fermionic field, say ¢, and trade the di;
integration for a trivial € integration, which amounts to a fermionic version of the Fadeev-Popov trick.
Consider a bosonic analogue: suppose we have an integral I = [i» dxdyg(x,y) and we knew that g
was rotation invariant. Instead factoring out the angular 0-integration that contributes a factor of 277
and performing the radial integral, we instead can employ the Fadeev-Popov trick here. Using the delta
function identity

/ dxlf(x)] = Y 1/f(x) (23.5)

roots of f

and rotated coordinates X’ = xcosf — ysin6,y’ = ycos® + xsin 6, we find the Fadeev-Popov deter-
minant

:/dG(S[f(x’,y’)] :/deé[y’] :/dG(S[yCOSG—i—xsinG] :% (23.6)

where the gauge-fixing condition is f(x,y) = y. Inserting 1 into our original integral, we have
I= / dxdyg(x, y)A(x,y) / a0s(y') = / d0dx'dy'g(x',y" ) A(x', y')dly']

—/dB/dxdygxy /dQ/dxxng—Zrc/dx

which is what we expect. But now we can see what goes wrong in the fermionic case: by analogy we
would like to write down an expression like

7z = / de / dX'dy exp (—S(X',0,44)) A (23.7)

but this expression is 0, since [ de {"independent of €’} = 0. However, the partition function should not
vanish; the resolution of this paradox comes from the Fadeev-Popov determinant A, which is

AX, 91, 92)” /deé F(X, 91, 9h)] = /de(s[lp{] = /deé[lpl + eoh] = /de(tpl + edh) = dh,

where the gauge-fixing function f is such that ] is set to zero. The partition function therefore is

7= / de / dX'dyy exp (—S(X',0,1)) 53171 (23.8)
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We see that the only contributions come from critical points of h: the theory localizes on fixed points of
the fermionic Q-variations where the Fadeev-Popov trick breaks down. The simplest consequence is that
the partition function Z is not zero, only critical points of & or fixed points of the supersymmetry varia-
tions, contribute to the path integral. This phenomenon persists in all supersymmetric theories, whenever
the action is invariant under a fermionic symmetry transformation. The same reasoning as above then
applies. This technique will be applied throughout the rest of this text.

Another point of view on the localization phenomenon is deformation invariance. Under h —— h +
p the action changes by 6,5 = 0hdp — 0*pi11ps, and we have 5c(dpyp1) = 92pdXypy + 0pdypy =
€ (apah — azplpllpz). S0 0,S = 6¢(9pY1) is Q-exact. But this implies that the action is invariant under
an infinitesimal rescaling of p! This is true as long as p is small at infinity in field space, otherwise
(6g) = [ dge=5 = [6(ge") # 0 due to a boundary contribution. If 11 is a polynomial of order 1, then
p can also be of degree n, as long as its leading term is smaller than h. In particular, we can choose p
such that we rescale h — th. After rescaling the partition function becomes

7= / AXdirdyps exp (—(01)2/2 + gr1p20%h ) = / dXexp (—£2(0h)2/2) %h.  (239)

Since Z is insensitive to rescaling of h, we can take f — o0, and the only contributions come from
critical points of h. But by identifying > = 1/, this is just the semi-classical approximation: we see
that the semi-classical approximation is exact. This continues to hold for all supersymmetric QFTs, which
simplifies the theory enormously.



3

TOPOLOGICAL FIELD THEORY

Topological field theories (TFTs) are toy models of full quantum field theories that generically only detect
global topological properties of the spacetime M they are defined on. The reason for this is that TQFTs
are independent of the metric on M. TQFTs come in two types: Witten-type and Schwarz-type.

In this chapter we discuss those of Witten-type: they are constructed by twisting, a procedure in which
the internal symmetries of a (metric dependent) theory are combined to obtain an enhanced BRST-like
symmetry, which ensures that the theory becomes metric-independent. We will discuss those of Schwarz-
type, the important example of which is Chern-Simons theory, in chapter 7.

The topological model we will study here is the A-twisted c-model with open and closed worldsheet. In
the open A-model, we discuss the concept of topological branes and their characterization. The motiva-
tion to do so is that the open A-model can be related to quantum mechanics, as we will show in chapter
6.

3.1 Cohomological field theory

As we saw at the end of chapter 2.3, localization and deformation invariance were the source of the power
of supersymmetric field theories. This behavior also occurs in a large class of topological theories, namely
those of cohomological type. These are defined by the existence of a symmetry Q which satisfies:

e Q is nilpotent. Denoting the infinitesimal transformations generated by Q by iedO = {Q, O}, we
have 62 = 0 or Q% = 0.

e The ground state is annihilated by Q: Q|0) = 0.
e Observables obey {Q, O} = 0.

Here it is understood that {Q, .} is the anticommutator acting on fermions and a commutator acting on
bosons. Because the topological symmetry generator Q is nilpotent, it is referred to, due to historical
reasons, as a BRST symmetry. The structure of the ring of observables is by the nilpotency of Q, entirely
analogous to that of cohomology: observables sit in the cohomology of Q: any observables O obeys
{Q, 0} = 0 and we identify O ~ O + {Q, X} where X is an arbitrary observable.

Furthermore, we require that the action S is Q-exact, S = {Q, V}, for some V, which is often called the
gauge fermion. This immediately implies that the stress energy tensor T}, is Q-exact, since

ol ov
Tyv = W = {Qr 5g”“} = {Q/ b;ﬂ/}/ (3.1.1)

where g,y is an appropriate metric. These theories are referred to as cohomological topological field the-
ories. The topological nature of the theory follows from considering, for instance, the partition function
of the theory, which is given by

z= /D¢exp(—5[¢]), (3.1.2)

where ¢ represents the field content of the theory. Since Ty, = 3S[¢]/6g"", we find that

s = | Do St exp (=5l = ~({Q b, 613



3.2 Supersymmetry on curved manifolds: the supersymmetric twist 18

where the bracket represents a vacuum expectation value. Since the ground state is annihilated by Q
and Q+, this expectation value must vanish and so Z must, at least formally, be metric-independent. In
fact, the expectation value of a combination of {Q, V} and other observables vanishes for any V, since
the vacuum must be invariant under the symmetry generated by Q.¥ Explicitly, we should have that for
any set of observables

(0[01...0{Q,V}Oiy1...040]) = (0]01...0; (QV£VQ) Oit1...0x|0)
+(0|Q0O; ... 0;0; 1 ...0,]0)
+€(0|0; ... 0;041 ... 0,Q|0)

= 0

in the process there appears an irrelevant sign € = 1. We were allowed to shift Q to the far left and
right by Q-closedness of observables {Q, O;} = QO; + O;Q = 0.

Now the semiclassical approximation is exact by deformation invariance: inserting a parameter 71 into the
path integral, we have

6Z

(Si?l =—({Q,V}) =o. (3.1.4)

1
Z= /D¢exp (hS[qb]) =
Hence, Z is independent of 71 and we can calculate Z exactly, in the limit that i — 0, which is exactly

the semiclassical approximation. From this, we learn that the theory localizes on field configurations for
which I = {Q,V} =0.

3.2 Supersymmetry on curved manifolds: the supersymmetric twist

Supersymmetry is parametrized by a supersymmetry spinor €A%, On flat space R”, there are no issues
in defining supersymmetry globally, since all fiber bundles on flat IR" are trivial. Infinitesimal supersym-
metry transformations are expressions of the generic form 6@’ = eQ® (i is a target space index): these
should be defined everywhere on M in order to show that the action is supersymmetric. If € is covari-
antly constant, De = 0, we can pull € outside covariant derivatives and conclude that for any variation
€ the action is invariant.

For o-models with flat worldsheet, one usually singles out a time direction: we set ¥ = Y X IR where
Y = S! in the compact case. This means that for global worldsheet supersymmetry, we only need a
covariantly constant spinor of Y, which on a circle would just have to be constant. However, on a general
curved worldsheet, we cannot single out such a time direction and generically there are no global sections
of the spinor bundle on a curved worldsheet. As a bosonic analogy, the hairy ball theorem shows that
there is no global non-vanishing vector field on S2.* Even worse, if a covariantly constant object vanishes
somewhere, it vanishes everywhere. This is the main obstruction to defining supersymmetry globally on
a general curved manifold.

So to obtain topological quantum field theories on a curved manifold, we need a trick to construct a
globally defined supersymmetry generator Q. The key observation is that scalar objects are always
globally defined: for instance, the bundle of smooth functions on M is always trivial. Therefore, if we
can change (part of) the supersymmetry spinor Q to be a scalar, we will have a globally defined (partial)
supersymmetry generator. This procedure is called twisting.

This follows from (¥|H[¥) = (¥|{Q,Q'} [¥) = [|Q|0)||> + ||Qt[0)||> > O for any state |¥). So for a supersymmetric
vacuum, we need Q|0) = Q'[0) =0

* The hairy ball theorem on CP'. Choosing local holomorphic coordinates (z,Z) on the Riemann sphere CP', and considering
the Kihler metric h = dzdz/(1 + |z|>)? shows that the curvature 2-form of the tangent bundle TCP! is given by Q = 2dz A

dz/(1 + |z[?)% Since c1(TCP') = 5= Q), we compute [ ¢1(TCP) = £ [ % = 2. Since any trivial bundle V. — M has

f c1(V) = 0, we see that TCP! is not trivial, hence does not possess a global section.
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The N = (2,2) 2d o-model

We pick a flat Riemann surface X, the worldsheet, and a target space manifold M. Then the 2d o-
model describes bosonic embeddings ® : ¥ —+ M. Picking local coordinates x' on M, ® is given
in local coordinates by ([Ji = xlo®,i = 1,...,dim M. Locally we can always find a flat Euclidean
metric whose components are given by g,z = gz; = %,gzz = gzz = 0. The action is defined such
that minimization of the action corresponds to minimization of the area of the worldsheet. Including
N = (1,1) supersymmetry on the worldsheet gives the action

1 . ] . . i . . 1 .
S = /Z iz (2 $ij0=9'0¢) + 589" D=y + S8y Deyl, + 4Rijkllp;lpf+¢klp’> . (3.2.1)

Here (z,Z) are local coordinates on %, d?z = —idz A dz, i,j =1,...,dim M are target space indices,
gij is the target space metric and R;jy; is its Riemann tensor. Note that here really should be D% gjj, the
pullback to the worldsheet of the target space metric, to make this expression well-defined. Here we sep-
arated the usual fermion kinetic energy ¥y* D, using 2-dimensional y-matrices* and the component
fields lpli of the Dirac spinors lpi, which transform as worldsheet fermions, but are target space vectors.
The worldsheet Lorentz symmetry, which is just a global 2-dimensional rotation, acts as

z—s ez, Py — PueT2, (3.2.2)

Note that 1 correctly transforms as a fermion due to the factor % To be more precise, we denote the
canonical line bundle K = Q9 (M) = T(ODX. of 1-forms on T and its conjugate K = QO (M) =
TODyY, = TAOY, Since a 1-form transforms under Lorentz transformations as dz — ez, looking
at the Lorentz transformation rule of i, we see that 1 is a section of the square root of K and 9_ is
a square root of K. We will denote these square roots by K1/2,W = K12, which we can think of

as being spanned by v/dz, v/dz. With this, we see that the correct geometric interpretation is that the
fermions ¥ are Grassmann sections of the tensor product

¥, €eT(Z,KV2@@"(TM)), ¢- (L, K20 d*(TM)), (3.2.3)

where ®*(TM) is the pullback of the target space tangent bundle. The covariant derivatives are accord-
ingly defined as the pullback of the Levi-Civita connection on TM, Dz{', = dz¢", + ag<p1rljklp’;. D, is
defined analogously. The supersymmetry transformations now are

opt = ie_, +ieppt, Op' = —e_0,¢' —ie gt T, o9 = —e d9' —ie_ph Tyl
where the parameter € is an anti-holomorphic section of K~1/2 and €_ is a holomorphic section of
K1/2. Note that they have to be (anti)-holomorphic in order to pull them through the covariant deriva-
tives upon variation of the Lagrangian, as mentioned before. Note also that az<pi and aqui are 1-forms in
the ’active transformation’ point of view, hence they are a section of K and K, which makes the expres-
sion consistent.

Now we upgrade M: we suppose it is a complex manifold. This extra structure allows to consistently
define patch-wise holomorphic and anti-holomorphic coordinates on M, which are compatible with the
transition functions. In particular, this means that we can consistently talk about the components

(Pi — {(Pi/ ¢l} ll"li — {lpli/ lpli} 81] — {gl]’g;]} (3.2.4)
wherenow i, j=1,..., % dim M are holomorphic indices and f,j =1,...,1dim Mare antiholomorphic

indices. However, note that the supersymmetry transformations do not in general preserve this, since the
supersymmetry transformations feature Christoffel symbols. We see that we can consistently define

*Using the generators of SU(2), the Pauli matrices 0¥, we have 40 = 09,91 = —igl. Moreover we use ¢ = <$7> and
+
D, = Do+ D1,Dz = Dy — D;.
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N = 2 supersymmetry if M is Kéhler: in that case the Christoffel symbols are nonzero only for totally
holomorphic or anti-holomorphic indices (see also the appendix). In this special case, the action becomes

1 -1 - . , . , .3 -

2 ; : kol

5= /zd z (281j324’laz¢] +58;9:4'0z¢) + igi " Dy +igy ¢!, Deyly + Rijkl¢l+ll’]+¢’¢) :
where we used 8ii = i and the symmetries of the curvature tensor (see the appendix). We now double

the number of supersymmetries to 4 real supercharges, since 1 Weyl spinor in 2 dimensions has 1 complex
degree of freedom, and V' = 2. The associated supersymmetry transformations are

(54’i = iszl?i + izx+¢i,, (51/)i+ = *5‘7824* - ivcg,bﬁl“fclt,bi,
o = il +in iyl o9y = —adzg! —in gt Tyl
Sy =~ 9:9' — i ykThy', oyt = —aidz9' —imyh Iyl

Since the Kahler structure allows for two holomorphic and two anti-holomorphic supersymmetry param-
eters, this is NV = (2,2) supersymmetry. For completeness, the spinors and parameters are sections

Pl € T(L, K172 @ o (T M), yi e T(L, K172 @ @*(TOVM)),

yl e T(L, K2 @ @ (T M)), yl e T(L, K2 @ @*(TOVM)),

wy, iy € T(Z,K1/2), a_,&_ eT(z,KY?).
Symmetries

We have given the supersymmetry transformations of the fields generated by the 4 real supercharges,
which we will denote as Q4+, Q_, which obey the algebra

{Q+,Q.} =P+H, (3.2.5)

where P, H are the Euclidean generators of space and time translations on the worldsheet X.. The super-
symmetry variation is written as

S=ia_ Qi +ia Q- +id_Q, +ia Q_. (3.2.6)

Note that the supersymmetry parameters and supercharges sit in the conjugate spinor bundles K1/2

and K1/2 to let § be invariant under Lorentz transformations: denoting the SO(2)-generator of Lorentz
transformations by M, this acts on the supercharges as

[M/ Qi} = :FQi/ [Mléﬂ:} = :FQ:N: (327)

Furthermore, the ' = (2,2) model admits two R-symmetries: the axial and vectorial R-symmetries
generated by Fy, F4. They act only on the spinors:

R e e P R o G AT PR CRX)
Since the supercharges are spinors too, they transform nontrivially under the R-symmetry:

[Fy, Q+] = Qx. [Fy,Qi] = —Qu,  [Fa,Qs] = £Qx, [Fa, Q4] =FQ4.  (329)
Twisting

As we noted, the supersymmetry parameters were sections of the spinor bundles K!/2,K1/2, which in
general do not admit global non-vanishing sections. In order then to define supersymmetry globally, we
need to adjust the theory such that the supersymmetry parameter can be in a generally trivial bundle:
we guess that it should be a scalar. To do this, we twist the theory, which amounts to a redefinition of
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the Lorentz group. From the point of view of the symmetry generators, we define new Lorentz generators
as

My =M+ Fy, Mp =M+ Fy4. (3.2.10)

Then if we define the topological supercharge Q4 = §+ + Q_and Qp = §+ + Q_, it is easy to check
that [MA, QA] = [MB, QB] =0.

A-twist B-twist

Generators Fy Fu M M+ Fy M+ Fy
Group/bundle U(1)y U(1), U(l)g L un, L] ul; L
Q_, - -1 1 1 K'/2 0 C 2 K
[ 1 1 -1 K?| o c| o ¢
Q_.y_ 1 -1 1 K1/2 2 K 0 C
Qp. s 1 1 -1 k| 2 K| -2 K

Table 1: An overview of U(1)-charges and the new bundles after the A-twist and B-twist. The subscript
E indicates the Lorentz group.

Performing this twist for all spinors in the theory shows that we get half as much scalar supersymmetries,
which enables us to define the supersymmetric theory on an arbitrary curved manifold. Note especially
that in twisting, we have to use global symmetries. Also note that twisting on flat space does nothing: in
that case, we are merely relabeling our symmetry generators, obtaining a scalar and a vector supercharge.
But both are globally defined on flat space, hence we look at fields in a different way, but can retain the
number of supersymmetries.

Here we glossed over an important detail: we can only twist with the R-symmetries if they remain a
symmetry at the quantum level before twisting. Therefore, we need to check whether or not the path
integral measure of the N' = (2,2) ¢ model is invariant under the R-symmetries. To check this, we need
to compute the number of zero modes. By complex conjugation of (Dzy+)* = D, _, the number of
zero modes [ for ¢4 and @7 is the same. Likewise, I_ is the number of zero modes for {_ and $+. By
checking (3.2.8) it is clear that the vector R-symmetry is always preserved. However the path integral
measure will not be invariant under the axial R-symmetry: it will transform by 2L =) Now we have
I, = dim HO(K'/2 @ ®* (T M)), where the H' denote the sheaf cohomology groups of D, and D-.
By Serre duality, H'(E) = H" /(K ® E)*, we have

dim HY(KY2 @ &*(TO M) = dim HO(K ® K> @ & (TOD pm))*
= dim H(K'"2 @ @*(TOYM))* = 1_.

where * indicates the dual vector space. The Atiyah-Singer index formula tells us that

dim H)(K'/2 @ @* (T M)) — dim H(K'/? @ @*(TOV M) = /Zch(Kl/z ® @* (T M))td ()

The left-hand side exactly equals the wanted number [ —[_. Using
ch(KY? @ @*(TOVM)) = ch(K'/2)ch(@* (TOVM)) = \/ch(K)ch(®*(TOD M))
= <1 —~ écl(T(1’0)2> (d + dD*(cl(T(lfo)M)))
=d+ O (c (T M)) — gcl(T(l'O)Z) +...,
td(TOx) =14 %cl(T(l'O)Z) +...,
one straightforwardly finds (keeping only 2-form terms) that

-1 — /ZQD*(cl(TM)). (3.2.11)
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Hence we see that while we can always twist by Fy, twisting by F4 is only possible when the target space

is Calabi-Yau. Some more details on index theorems and fermion zero modes can be found in appendix
7”?

3.3 The A-model

After the A-twist we rewrite the fermions so it is clearer that they have become scalars and vectors:
S A el A L A S & (3.3.1)

In this notation, the action for the A-model is
1 | - ;o i H P 7 kT
Sa= /Z d*z <2gijaz4>laz4ﬂ + 58;j9:¢'0z¢) — igyzDzx’ + igpzDzx) — Rijkz¢2¢éxkxl> - (832)

After the A-twist, the supersymmetry parameters w_, & are Grassmann Lorentz scalars while a, & _ are
Grassmann Lorentz vectors. Setting to zero the latter two, and denoting the scalar ones by a, &, the scalar
topological supersymmetry variation is 6 = ia 4 Q, + in_Q_. The new supersymmetry transformations
become

opt =inx', oYl = —adzp' — iax T YL, ox' =ox' =0,

s’ = imx, oyl = —ad.¢ — iax Tyl (3.3.3)
We note that the topological supercharge is nilpotent on-shell: it is possible to introduce auxiliary fields to
get nilpotency off-shell. To get the variation associated to Q4, we set & = &, sothatd = in(Q, +Q-) =

i®Q 4. In that case, the nilpotency of Q is trivial. As before, interpreting x' = dq‘)i, Q4 acts as the de
Rham differential on ¢ and x. Now we can express the action as

Sa=it [{QuV}+ [¢'@), V=g (vlogl +0:0'vY) (3.3.4)

and wis = figijdxi A dx is the Kahler form of M, whose pullback to the worldsheet is ®*(w). We also

added a coupling constant for localization purposes later (note that we can arbitrarily add Q-exact terms
to the Lagrangian at will). The Q4 exact part becomes

it /Z {Qa, vV} =2t /Z d*z (—g;ﬂPiszf + ig,ylP%szj - Rl-;kﬂl’%wix"xj) : (3.35)

We see that the A-model is almost topological in the sense described in the previous sector: (3.3.4) is
almost Q 4-exact. However, the second term in (3.3.4) only depends on the homology class of ® (%) (see
chapter C). The consequence is that we can split up the A-model path integral as a sum of the basis
elements of Hy(M, Z):

Z= ¥ epl-wp

BEH, (M,Z) lp(=

., DIDXPY exp <—it / {QA,V}> (3.3.6)

where w - B = f/S w. We see that the individual terms in the sum can be regarded as describing a

topological field theory. From the A-model action (3.3.2) or from V it is clear that in the limit h_li =
t — oo, or by considering fermionic Q-fixed points, the theory localizes on holomorphic maps 9,¢' =

dz¢' = 0.
Observables

It is straightforward to find the observables of the A-model. Since inserting the s would require world-
sheet metric insertions in the path integral, they are not valid local observables, hence all A-model ob-
servables are of the form

Oc(x) = Ciy iy e (p(x))x Xy, (3.3.7)
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Using X', x' ~ d¢',d¢’, they should be viewed as (k, k)-forms on M. They satisfy {Qa, Oc} = Oyc:
we identify the Q4 cohomology H(Q 4) with the de Rham cohomology H(M) of M. These observations
are a specialization of the general structure of observables in twisted theories, a story we will forego here.
Our immediate goal is to describe what correlation functions of these observables compute.

A-model correlators and selection rules

After the twist, the number [, of x and X zero modes is always the same, by complex conjugation of
Dx. likewise for the number of zero modes Iy for the ys. The R 4-anomaly is present if [, # ly. A
slight modification of (??) follows: the x zero modes are elements in H'(¢*(TM)). Now again the
Atiyah-Singer index formula gives

/Z ch(¢*(TM)) Atd(TZ) = dim H°(¢*(TM)) — dim H! (¢* (TM)). (3.3.8)

By Serre duality H'(¢*(TM)) = H°(K ® ¢*(TM))*, which is the dual to the space of { zero modes.
Hence, we see that the right-hand side exactly equals what we need:

1
lX—l¢:/Zq>*c1(TM)+2d/Z§cl(T2) :/ZdD*cl(TM)—l—d(Z—Zg—h) —2% (339

Here we used [ ¢1(TX) = x(X) = 2 —2g — h, the Euler characteristic for open (and closed) worldsheets
with /1 boundary components and d = dim M.

Now consider a A-model correlator (O ... O,), which is non-vanishing only when we have enough op-
erator insertions such that we have soaked up all the fermion zero modes. In the generic case, by (3.3.9)
we can only consider correlators with 2k x and/or ¥ insertions, since § operators carry a Lorentz index:
inserting such fermions would require worldsheet metric insertions, which kill the topological invariance.
So we assume we are in the situation that Iy, = 0, such that dim H'(®*(TM)) = 0. To preserve the
vector R-symmetry, we need k xs and k x's. Note that such a correlator has non-trivial axial R-symmetry
charge, again we conclude that the axial R-symmetry is spontaneously broken.

Upon localization, the A-model path integral reduces to a sum over holomorphic maps into the target
space M, weighted by the worldsheet area fz D*w and classified by the 2-cycle B which X is mapped
into, as shown in (3.3.6). We define the space of such maps

Mz (M, B) = {®: X — M | ® holomorphic, D.[X] = B},

which we assume to be a smooth manifold. Then a localized A-model correlation function becomes

c,(x1) ... Oc,(xn)) = e ¢ ---9c, ) 3.
(Oc,(x1) ... Oc, (xn)) )3 “P(Oc, ... Oc,)p (3.3.10)
BEH(M,Z)
where
(Oc,...0c,)p = /MZ(M,/S) eviwy A ... Nevywy, (3.3.11)

using ev; : My(M, ) = M, D — ®(x;). In a special case, this leads to something nice: suppose {D; }
is a collection of submanifolds that intersect transversely in M and have }_; dimg D; = dimpg M, then
choosing operators O¢, such that C; is the Poincaré dual® to D; gives the correlator

<OC1 (xl) . Ocn (xn)) = Z Eiw'ﬁi’l‘ngll._.,Dn, (3.3.13)
BEH2(M,Z)

*The Poincare dual 15 to a submanifold S is determined by the condition that

/t*w:/ wAT7s. (3.3.12)
Js Jm

Note that the degree of 175 = codim S and 775 has delta-function support on S. In Bott, this is done for a closed oriented submanifold,
we will just use the generalization to a non-compact submanifold.
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where ng p, . p, is the number of holomorphic maps that obey ®(X) = Band ®(x;) € D;,Vi. These
numbers are called the Gromov-Witten invariants. When B = 0, so ®(X) is a point, we have M (M, 0) =
Mand (O1...0,) = [ywi A... Awy = #(DyN...NDy) is the classical intersection number. This
immediately gives the interpretation of the higher order correlators: they give a quantum deformation of
the classical intersection number, given by worldsheet instantons in M.

s b RN
T AR

Figure 2: Worldsheet embeddings with operator insertions at marked points mapped to
transversal submanifolds in the target space.

3.4 Topological branes

So far we have discussed the topological theories with closed worldsheet. Naturally, these models gen-
eralize to the case with open worldsheet, which will important to us in the coming chapters. Our main
aim is to discuss how the open worldsheet can couple to topological branes. The canonical reference for
this is [6], in which the co-isotropic brane was described for the first time.

We recall that we defined the topological supercharges Q4 = QJF 4+ Q- and Qp = QJF +Q_. For
convenience, we take a flat worldsheet ¥ = R x (—o0,0] and consider the supersymmetric & model
with @ : X — M, equipped with superpotential W and whose target space M is Kéhler. M carries a
Kahler metric g and Kahler form w, moreover the worldsheet embedding ® maps the boundary 0% into a
submanifold N C M. This model is called the Landau-Ginzburg model and we will encounter this again
in chapter 6. Our goal is to find under what conditions N can be viewed as a topological D-brane. We’ll
use worldsheet coordinates (x%,x!) € R x (—00,0] with w™ = x? & x! such that 0+ = 9y £ ;. The
action reads

Sic = /2 2w (2gi75¢fa¢7 + 2870, WaW + gl 9/ Did;W + Py D;E)]—.W)
: i i . 7 o7
+ [ o (zgwtiwi + 58! Dy’ + Ri,»kzwwwkwl)

and the four supercharges Q4 and Q. are the worldsheet x! integrals of the supercurrents G

e R
Gl =gyl F 5950 W,  GL = Fgza=¢/yl — Sy W, (3.4.1)

C) —gaugiyl + Lylaw,  TL=Fgaipvh + Lylaw
+ = 80+ £ SPx0iW, + = T80+ ¥ + ¥V (34.2)
These follow directly from Noether’s theorem applied to supersymmetry. Then to preserve N/ = 1

supersymmetry we need the variation of the action
0S8 = / d?x6X (bulk EOM)+/£) de(SX(boundary terms) (3.4.3)
% )

to vanish, where X represents the bosonic and fermionic fields of the theory. Combining the holomorphic
and anti-holomorphic indices into a single index I, the boundary variation d X(boundary terms) is

sidp'arg) =0, gy (vLoy! —yloyl) =0 (.44
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at 9X. Since the N = 1 supersymmetry transformations are given by
5p! = ie (lPi + 1/;1_) , oyl = —edig! Fegoyim W ieThey K, (3.4.5)
the boundary variation contribution is
i€ i _
0Slas = 5 | (—guaoqbf (9 —9h) —guorg! (L +9l) =5 (¥' + ¢l )aw- W>> .
(3.4.6)

Realizing that ¢ maps dX into N, we get that 5¢I must be tangent to N, now it is easy to see from (3.4.4)
and (3.4.6) that

t, = 9o’ is tangent to N, tp=i (1,01_ + wi) is tangent to N, (3.4.7)
ny, = 919" is normal to N, ng=i (¢£ - 1,bl+) is normal to N (3.4.8)
and that Im W has to be constant on a connected component of N.

In addition, we want to preserve N' = 2 supersymmetry. For A-type supersymmetry, the condition is
. —=1

that the space component of the supercurrent vanishes at the boundary: G, + Gl = 0, for B-type

supersymmetry it is the obvious analogous condition. Since we shall only consider the open A-model in

the hereafter, we only look at the first case. Let us first consider the case that there is no B-field on the

worldsheet or a non-zero gauge field on the brane N. From (3.4.2) we find that

—1 i i 1
G, +GL = (g(nb,tf) —g(tb,nf)) -5 (w(th, t) — w(nb,nf)) + StArlm W+ SnfdiRe W

SN

% (w(nb,nf — w(tb,tf)) + %n}alRe W. (3.4.9)
Since the vectors tj r, 11 5 are arbitrary, the last three terms have to vanish individually. Vanishing of
w(ts, ty) means that N is isotropic with respect to the symplectic form w, while w(ny, 15) = 0 implies
that N is co-isotropic. This means that N is a Lagrangian submanifold in M. The third term vanishes
automatically. This follows from considering the A-model supersymmetry transformations: these read
for a holomorphic index

op' = e (pl — ) +ie (yl + ') = ety —ieny. (3.4.10)

Now 6¢' must be tangent to N, but tells us that iny should be tangent to N. Comparing to the con-
straints in (??) and (??), we learn that multiplication by i turns any holomorphic normal vector into a
tangent vector. Since we know that g”a]lm W is a holomorphic normal vector to N, igUB]Im W is tan-
gent to N. Hence also gUBIW is tangent, so g”BIRe W must be tangent to N. Therefore, the third term
in (3.4.9) vanishes.

Turning on a B-field on the worldsheet has the same effect as turning on a gauge field on N. In the latter
case, the gauge field shows up as a boundary contribution to the action

I
/az Ardg. (3.4.17)

Its variation is given by fE)Z dxoé(plaoqb]FU, where Fj; = B[IA” is the curvature of A. With this extra
boundary contribution, it is straightforward to check that the boundary conditions for N' = 1 supersym-
metry on the fields are modified to

t, = dp¢! is tangent to N, tr= !+ l,bﬂ_ is tangent to N,

ny = 019" + g™MFpn0oeY is normal to N, ng = Pl — ol — gIMFMNt}\I is normal to N.
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Here we left the inclusion ¢t : TN — TM (for the indices on F) implicit, just as the metric g, which
pedantically is g restricted to N. Again, Im W must be constant on N. The condition for N’ = 2
supersymmetry is modified to
—=1 i _ i
G, +Gl = 3 ((w + Fw 1F)(tb,tf) - w(nb,nf)) + i 1(gnb,FTf)
. , . I
i 4 i i
+§w (g?lf,Fth)-f—E <1’lf+zg Fi’f) diRe W. (3.4.12)

Here we have dropped most indices for visual clarity. The term including d;Re W vanishes for the same
reasons stated earlier. We now denote by

(TN): = {v € TM | w(v,w) =0,Yw € TN} (3.4.13)

the orthogonal complement with respect to w. As before, the six terms in (3.4.12) must vanish individually.
Vanishing of w(ny, 1¢) implies that N is co-isotropic, so (TN)L C TN. Furthermore,

w~'(gng, Fty) =0=F =0on (TN)" x TN
(w+Fw 'F)(ty,tf) =0 = w+ Fw 'F=00on TN/(TN)".

The last condition means that
(wF)? = -1, (3.4.14)

so that w 'F = ] is an almost complex structure. It can be shown that | actually is integrable: it is an
honest complex structure. To show this, the Nijenhuis tensor for | should vanish. This was proven in
[6]. The idea of the proof for Lagrangian branes uses that both w and F are symplectic. Since w™'F has
eigenvalues +i by (3.4.14) w + rF is symplectic for any real r and hence invertible. It follows that ™!
and F~! are compatible Poisson structures* and by the fundamental theorem of bihamiltonian geometry
it follows that the Nijenhuis tensor of w™!F vanishes.

To summarize, we see that in general open A-type worldsheets can end on a coisotropic submanifold of M,
on which there is a gauge field with non-vanishing curvature. It turns out by more careful consideration
(see [6]) of the form of w™! that dimg M — % dimpR N must be even. Note that this implies that for M a
Kahler manifold the co-isotropic brane of maximal dimension, namely dimg M, always is an admissible
A-brane. This A-brane is called the canonical co-isotropic brane, which we shall denote in the hereafter
by Bec. Likewise, we shall denote a Lagrangian A-brane by B.

The category of A-branes

It is known that A-branes sit in a category of their own: the Fukaya category F°(M). However, the un-
derstanding of this category is still far from complete. The main feature of 7°(M) is that its morphisms
come equipped with an A®-structure. The morphisms can be represented by open A-strings* with disk
worldsheets, which end on the A-branes. We shall be rather descriptive here, as we will not need the
technical details, which can be found in [7].

FO(M) is derived from another category called F(M). Recall that an A-brane is characterized by its
support, a coisotropic submanifold 3, and a vector bundle E — B. Therefore we represent objects
in F(M) as a pair O = (B,E). For any pair of objects O;, Oj, we then have an abelian group of mor-
phisms Hom(O;, O]-) that carry an A®-structure. An A®-structure is a souped-up version of a differential
graded algebra: it is a Z-graded algebra, with a degree 1 map m1, which squares to 0, analogous to the
de Rham differential. However, this algebra also contains higher degree maps my, which satisfy a system
of non-linear conditions. Let us restrict ourselves to Lagrangian A-branes O1, Op. When two such branes

*A Poisson structure is a skew-symmetric map {.,.} that satisfies the Jacobi identity and is a derivation in its first argument.
The simplest example is the Poisson structure induced by a symplectic form w as {f, g} = w;;0;f9;g, as on any classical phase
space.

*We abuse language here: we mean just the open A-model, not the full topological string.
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intersect transversally in a point p = By N By, one can define Hom(O1, 02) = Hom((E1)p, (E2)p)). as
the space consisting of holomorphic disks that map (parts of) the boundary S! into By and B,. More
generally, when n 4+ 1 Lagrangians O; intersect transversally, one can express the higher degree maps m
in terms of holomorphic disks whose boundary lies on the given Lagrangians. The morphisms described
just now are in general not associative, however their cohomologies are. So by taking the bottom coho-

mology HO of all Homs (which each have the structure of a complex) in F(X), one gets a good category
FOX).

The reasons that 79 (M) is not completely understood are, for instance, the problems that arise when the
branes intersect non-transversely. One also has to deal with coisotropic A-branes, moreover, the exact
contents of FO(M) is not entirely clear. Finally, the moduli space of holomorphic disk embeddings in X
has a codimension-1 boundary, given by the bubbling off of holomorphic disks.* The consequence of this
bubbling is that m is not nilpotent anymore, and the A® structure becomes obstructed.

This story is tightly intertwined with mirror symmetry. There are B-branes in the open B-model, which
turn out to be complex submanifolds with vector bundle. In particular, B-branes are not equivalent to
A-branes and sit in their own category. The space of morphisms is also different, since the B-model
localizes on constant maps into M. One can show that the correct category for the B-branes is D’ (M),
the derived category of coherent sheaves on M, which is better understood than the Fukaya category.
To any Calabi-Yau manifold M, one can naturally associate D?(M) and FO(M): the homological mirror
symmetry conjecture now posits that these categories are equivalent. In full generality, a rigorous proof
is not yet known.

*Bubbling very roughly means the following. Consider the moduli space of holomorphic curves > — M that represent the class
B € Hx(M,Z), with genus g and nn marked points. In symplectic geometry, it can happen that a holomorphic map f : C — M
with finite area can, under the right circumstances, be extended to a holomorphic map f : 82 = CU {0} — M by removal of
singularities. This means that given a sequence of holomorphic curves ], in the moduli space Mg (X, B), it can happen that the
limit Joo of this sequence is still an honest holomorphic curve in Mg (£, B), while having local singularities. Namely, there can be
parts of the curve Jo that have degenerated into a sphere that has transversal intersection with the rest of the curve: the sphere
has bubbled off. In this case, the sphere and the rest of ], are connected only by a single node.
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EXOTIC INTEGRATION CYCLES

We now come to a key application of Morse theory to field theory: we use the Morse flow to find an
alternative integration cycle for path integrals. This technique exploits the simple observation that along
downward flow, the Morse function h strictly decreases. This property points out suitable integration
cycle on which one can obtain formal convergence of highly oscillatory integrals. We will also discuss
how we can combine this technique with localization in supersymmetric c-models. These ideas will be
the key to the new dualities discussed in chapter 6 and 8. A reference for this material is [9].

4.1 Morse functions and gradient flow

We first set some terminology. Consider a compact manifold M and a scalar functionh : M — R. A
Morse function is a function h that has isolated critical points p € M where

(;Z) =0, Vi (4.1.1)
p

Note that a Morse function only has a finite number of critical points on a compact manifold M.* If M
is compact, I also attains its maximum and minimum. If M is not compact, we will assume the Morse
function still has only a finite number of critical points. For such a Morse function, we can define its
Morse index as follows: consider the matrix of second derivatives, the Hessian

2
H;; = i (4.1.2)
J dx'ox] p

of h in local coordinates at a critical point p, then
the Morse index y(p) is the number of negative eigenvalues of Hj;. (4.1.3)

It is a result that Morse functions lie dense in all smooth functions: hence a large class of functions are
Morse. We shall first only consider Morse functions with non-degenerate critical points where the Hes-
sian has no zero eigenvalues, and indicate later what adjustments should be made in the degenerate case.
We denote the number of critical points of index k as Nj.

Now the gradient of the Morse function h will define flow lines that start and end at the critical points of
h. This is immediate: the gradient of /i defines a vector field on M, which in turn defines integral curves
or flow lines by the flow equation. Using local coordinates x' and a choice of metric gijon M and a flow
parameter s, flow lines are described by a map y : R —— M that is a solution to the differential equation

L = g4l — (4.1.4)

which are called the downward (-) and upward (+) flow equation. The analysis of the space of solutions
of this equation and their behavior forms the starting point of Morse theory. A choice of Morse function
h and metric g is called a Morse-Smale pair (h, g).

*The set of critical is discrete since the critical points are isolated. Since we can find an open neighborhood around any critical
point p, by compactness of M it follows that there are only finitely many critical points.



4.2 Exotic integration cycles: a 0-dimensional example 29

The Morse lemma states that locally around p we can choose normal coordinates centered at p such that
h can be written as

#(p) dim M
h=hy— Z ciw,z + Z ciwiz + (’)(w3), Sij = 5,‘1’ + O(wz) (4.1.5)
i=1 i=u(p)+1

at p. In these coordinate, the downward flow equation becomes simply

v
ds

= —quw', (no summation), w'(s) = r'exp (—¢;s) . (4.1.6)
This solution is in general only valid for some finite flow time, after which the solution has to be extended
in a new coordinate patch. We shall assume that the flow can always be extended for sufficiently long

flow times. Note that if % = 0 at some finite flow time s, the flow equation implies that the flow will
remain at that critical point for all s. We conclude that flow lines can only interpolate between critical
points at s = Fco. Note that in general, there can be Morse flow between critical points, provided the
Morse function has suitable behavior. We shall come back to this later.

Figure 3: Downward and upward flow from a critical point.

If the flow starts at p at —co, then necessarily ' = 0 whenever ¢; > 0. But the number of negative e;
equals the Morse index y(p), so we are left with y(p) unconstrained r'. Hence, the family of solutions
that start at p is y(p)-dimensional.

4.2 Exotic integration cycles: a 0-dimensional example

Suppose @ are some fields and we have an action S(®), then the partition function of the theory is
determined formally by the path integral, in Lorentzian signature:

Z=LD¢&WR®. (4.2.1)

In general, S(®) is a polynomial in ® and has a positive definite real part. Our goal will be to find an
alternative integration cycle C’ so that Z can be expressed as an integral over C’. Normally C is a trivial
cycle: we have to integrate over all field configurations ®; it is clear that to find a different cycle, we first
need to ’create more room’. We shall do this by complexifying all the objects in the path integral, which
doubles the number of dimensions we can work in, upon which we find suitable middle-dimensional cy-
cles in the complexified space to find C’.

Consider the 0-dimensional oscillatory path integral whose action is the Airy function S(A, x), defined
for real A:

3
z= [ dvexpS(hx), S(x) =ir (5 —x).
— xexpS(A,x), S(A,x) =i (3 x)
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Suppose we want to analytically continue it to complex A: this cannot be done arbitrarily, since if
Im A # 0, the action S(A, x) will always diverge to +oo at either x —> 400 or x —> —o0, depending
on the sign of Im A. Hence, to extend the integral to complex A, we consider the following.

We complexify x — z, upon which there are 3 ‘good’ regions at infinity in the complex z-plane where
S(A,z) — —oo, so where the integrand of the path integral falls off exponentially. To be explicit:
writing A = |A| expif, and z = |z| exp if; the dominant contribution towards infinity comes from

Re iAz® = Re [iC (cos(6) + 36.) + isin(6) + 36,))] = —Csin(6, + 36.), CcC>o. (4.2.2)

0, is fixed, and we see clearly that there are three intervals for 8, where Re iAz3 — —oo. Since S(A, z)
is a polynomial with positive powers of z, the integrand exp S has no poles and we are free to deform
the integration cycle CR to C’ to make the path integral convergent. This happens when C’ connects two
‘good’ regions. If we keep the end points C’ in the same region as the corresponding end points of Cg, the
value of the path integral does not change. This follows easily by Cauchy’s theorem: suppose two paths
C1, Cy that extend to infinity are related by a continuous deformation and are oriented parallel-wise, and
let f(z) be a function that has no poles in the region enclosed by C; and C,. Moreover, suppose that
f(z) dies off sufficiently fast such that in closing up C1, C; at infinity, we do not get any contributions
there (this should be done in a suitable limiting procedure). Then

jéfl f(z)dz — 7{22 f(z)dz = ﬁl_cz f(z)dz=0 (4.2.3)

so we see that the two integrals over C and C; coincide. Here we should think of the sum C; — C; as a
union of cycles taking the orientation into account.

Extending this argument to the situation with the Airy function, we can choose three cycles C1,C;,C3
that connect two subsequent ‘good’ regions. By holomorphicity of exp S(A,z) it follows immediately
that

expS(A,z)dz = 0. 4.2.4
/(:1+c2+c3 pS(A,2) (4.2.4)

This is also clear from the fact that C; + C, + C3 can be deformed into a closed contour. If Cy is a
continuous deformation of Cr whose endpoints lie the same ‘good’ region and has the same orientation,
we see that

S(A,z)dz = — S(A,z)dz = S(A,z)dz. 425
/C]Rexp (A, z)dz /C’lexp (A, z)dz / expS(A,z)dz (4.2.5)

Cr+Cs

The minus sign comes from the orientation of Cy relative to Cr. We will call the alternative cycle C; + C3
an exotic integration cycle. We can rephrase the last observation a bit by interpreting the cycles C; as
generators of the relative homology H1(C,C.1) where X_.7 = {z € C : Re S(A,z) < —T}, which is
the homology of cycles with endpoints in the ‘good’ regions, one of the components of ﬂ{T:T>,oo} X<
We should think of Hy(C,C7) as the equivalence set of ‘good’ integration cycles modulo smooth de-
formations that keep the endpoints of a ‘good’ cycle in the same ‘good’ region.

Let us now see how we can reproduce such an exotic integration cycle in a more intrinsic way. To do this,
we use Morse theory in the complex setting, where is also called Picard-Lefschetz theory. We regard the
real part of S(A,z) as a Morse function i = Re S(A,z). This is a smooth function (it is the real part of
a function holomorphic in z) which has two isolated critical points at z = 41, which have both Morse
index 1. At those points, we have

Sy = ¢%, hy = i?. (4.2.6)

Note that the critical points of /1 are the same as those of the uncomplexified action S(A, x), since by the

dReS __ dIm S
dRez ~ dimz*

Cauchy Riemann equations, we have for the holomorphic function S:



4.2 Exotic integration cycles: a 0-dimensional example 31

We now make an observation on Morse flow. Consider a general n complex-dimensional complex mani-
fold M, and let /i be the real part of a complexified polynomial, defined in term of local complex coordi-
nates z/,Z' on M. A flow line generated by / is determined by the Morse flow equation, which in local
real coordinates w' and a metric gij on C" reads

dw' i oh
— oo 4.2.
s 8 50 (4.2.7)
where s is a flow parameter. Multiplying both sides by the flow speed, we obtain
i y
dw' oh _dh _; oh Jh <0 (4.28)

ds ow  ds  C dwlow

If a—h, # 0, the rightmost term is always negative, by positivity of the metric. This means that if the
flow line does not interpolate between critical points, as s — o0, h will always decrease to —oo. This
is exactly the behavior we wanted on our exotic integration cycle. Also, along downward flow lines, the
maximum of /1 is attained at p, since h is strictly decreasing along downward flows.

Downward flow and complexification

Since here our Morse function h is the real part of the complexification S of a real polynomial, by the
Morse lemma, locally at p, & is always of the form

n n
S=5+ Z;cizl2 +0(z*) =h=ReS =ReSy+ Zci(x% —yH) +0(2%), (4.2.9)
i=1 i=1
so we find immediately that such h always have critical points with Morse index 1, which is exactly the
dimension of the original real space we started out with. Combined with our earlier observation, we see
that for non-degenerate critical points p, the unstable manifold C, always is an real n-dimensional cycle
or in other words: it is a middle-dimensional cycle.

y &

<

Figure 4: Equal numbers of downward and upward flow directions when the Morse function
h comes from a complexification.

Perfect Morse functions

C" is not compact, so our choices for i will generically be unbounded from above and below. In this sit-
uation, h generates the relative homology H, (C",C" ). A generalization of the weak Morse inequality
(C.1.1) now tells us that the rank of H, (M, M) is at most the sum of Morse indices of . If the Morse
function does not have pairs of critical points that differ 1 in Morse index, there actually is equality. In
this case, I is a perfect Morse function and the weak Morse inequality is saturated: by (M) = Ni(M).*
This immediately tells us that Morse functions that are a complexification are perfect. For instance, for
the Airy function, the Morse indices are both 1, and we indeed find that the rank of the relative homology
for the Airy function is 2.

*This reflects the fact that only instantons between critical points that had adjacent Morse index can lift the energy of the
ground states associated to the critical points, hence removing states from the cohomology of ground states. For this, see appendix
C.2.3.



4.2 Exotic integration cycles: a 0-dimensional example 32

Decomposition in Lefschetz thimbles

Now all the critical points p; of i generate downward Morse flows, which define middle-dimensional
cycles Cp,. In the complex setting as above, these cycles are called Lefschetz thimbles. We can then
decompose the exotic integration cycle C as

C =) ncC,, n; € Z. (4.2.10)
i

The coefficients 11; have to be determined intrinsically. Geometrically, as a first guess one might want to
use intersection products between C and the Cp,. However, this is not possible: going back to the Airy
function, the intersection between two 1-cycles should be a 0-cycle in Hy(C, C ). But any such 0-cycle
(a set of points) is always deformable into C T, so we can always arrange for it to have zero intersection
with C. But since the cycles C), are elements in H,,(M, M), which is a vector space, we can use its
dual space to determine the n;. It follows from Morse theory that the dual space consists of the cycles
defined by upward flow. Upward flows are solutions to

dw' )
P e;w (no summation). (4.2.11)
which is the upward Morse flow equation in a local neighborhood of a critical point p. Following the
same logic as above, we require that the solution approaches p at flow time s — —oo, it follows that a
critical point with Morse index 1 generates a cycle KCj of dimension 7 (in general, if p has Morse index k,
ICp has dimension 2n — k). The cycles K sit in a different homology group, which we call H" (M, MT),
where M7 is the subset of M where i > T. Since the two homology groups are of complementary
dimension, there is a natural intersection pairing between them. For the moment, we only consider the
case where there are no flows between two distinct critical points. In that case, it follows that the only
point where an upward Cp, and downward flow K}, intersect are at the critical point p. Moreover, by the
properties of Morse-Smale theory, they always intersect transversally. Therefore, the natural pairing is
such that

(Kp,Cq) = 0pg = n; = (C,Ky,) (4.2.12)

Note that with this procedure, it is possible to decompose any cycle C in terms of the Lefschetz thimbles.
Now let us apply this to the important case that & is of the form

h = Reitg(x1,...,Xn), g is polynomial. (4.2.13)

In our applications, i will always be of this form. Suppose that t is real: what is the generic decomposition
of CR into Lefschetz thimbles? Observe that on the set Cg where all x' are real, i = 0, since it’s purely
imaginary. Then we have three classes of critical points: those with h > 0, h = 0 and i < 0. Since
the n; are determined by upward flow, critical points with i > 0 cannot have upward flows intersecting
with CRr. Critical points with i = 0 can only have the trivial upward flow intersecting with Cg, hence
for them n; = 0. Lastly, for i < 0 the n; are unconstrained. Hence we find that in this special case

Cr=)_ Cp+ )Y ncCp. (4.2.14)
h=0 h<0

The Airy function revisited

Let us now go back briefly to the Airy function. Its two critical points at z = £1 have Morse index 1, and
the value of 1 there were given in (4.2.6). If A is not purely imaginary, there is no Morse flow between

x = =1, however if A is purely imaginary, as we mentioned before, there is a flow line connecting
z = ®£1. Moreover, since & is constant on the real axis, the upward and downward flows can only
intersect at z = 1. For A that are not purely imaginary, it follows that the downward flows from
z = =1 generate what we called C;,Cs, which are exactly the generators of the relative homology

Hi(C,C.7) of integration cycles that we found by more primitive means. The exotic integration cycle
equals C =n,1Cy1 +n_1C_1. As long as Re A # 0, there is no flow between z = %1 and it follows by
choosing the orientation as in the picture that 4 = 1. So C = C_1 + C1, as expressed in (4.2.5).
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Figure 5: Lefschetz thimbles for the Airy function.

Degeneracy of critical points: critical subsets

The Morse functions that we will use will in general not have isolated critical points, but rather its critical
subsets will form a (collection of) submanifolds, since in general there may be directions in which h has
zero derivative; J1 is constant on such subsets. This requires a generalization of the techniques above. The
class of functions whose critical subsets form submanifolds of M, but still have the same properties in the
transverse directions to the critical subsets, consists of Morse-Bott functions. The Morse index in this case
is usually denoted by (i_, iy, where i_ is the dimension of the unstable manifold and iy = dim M —i_
is the dimension of the stable manifold and the critical subset. We will assume that all functions used
hereafter are of this type, that is, we can apply Morse-Bott theory to them.

Figure 6: Downward flow from a middle-dimensional subset V of the critical set.

After complexification, all dimensions double, so we need to count dimensions to determine how many
extra boundary conditions we should impose on the flow to get cycles C}, of middle dimension. Suppose

we have a Morse-Bott function 4, and let N@) be a connected component of the collection of critical
subsets of h, of real dimension 2r. There are 2n — 27 real dimensions normal to N and we assume that /
is non-degenerate in those directions. Then there are 2n — 2r nonzero eigenvalues of the Hessian of /1 of
which half are negative. Using the flow argument again, the values at s = 0 of flows that start at N form
a submanifold N of real dimension 2r 4+ (n — r) = n + r. To get a middle-dimensional cycle, we need to
impose an extra r conditions: we need to choose some r-dimensional cycle v c N@) on which flows
should start. We see that & is of index (2r,2n — 2r).

4.3 Morse theory on infinite-dimensional M

There are a few generalizations that will be important to us. Firstly, one can apply Morse theory on a
complex manifold, which is called Picard-Lefschetz theory. This shall be discussed in section 4.2. Fur-
thermore, we shall need the infinite-dimensional version of Morse theory in chapters 6 and 8, where M



4.4 Exotic integration cycles and localization 34

becomes infinite-dimensional. The infinite-dimensional version of Morse theory is called Floer theory and
is technically more involved. However, the conceptual ideas of Morse theory still generalize, as long as
the flow equations are elliptic.

Recall that on IR” a differential operator can be denoted as D = ZZ,M:O by (x)0%, where x € R" and
a is a multi-index. D is elliptic if its characteristic polynomial (or symbol) o(x) ~ ¥ jsj—y ba(x)p* is
non-zero for p* # 0. This notion can be easily generalized to differential operators between fibers, where
the appropriate generalization is that o(x) is invertible away from 0. An elliptic differential operator D
retains most of the desirable properties of differential operators on finite-dimensional spaces: for instance,
by the Fredholm alternative the kernel (the solution space of Df = 0) of D and its elliptic adjoint D*
is finite-dimensional and their solutions are well-behaved by regularity theorems. Moreover, it allows to
rigorously define a relative Morse index, called the Conley index. To do this, analytical elliptic estimates
are central in showing that these are well-behaved; we shall take as a mathematical fact that ellipticity
validates the use of Morse theory in the infinite setting: more mathematical background can be found,
for instance, in [13].

4.4 Exotic integration cycles and localization

The distinguishing feature of using exotic integration cycles is that one can formulate the path integrals
on an exotic cycle in terms of open o-models. In this story, the boundary 9% plays an essential role. In
this section, we want to make precise the subtleties that appear at the boundary and to view the new
duality from a different angle: we give an alternative explanation how we can localize the 1-dimensional
o-model on an exotic integration cycle for 0-dimensional quantum mechanics. More explicitly, we want
to describe the Poincaré dual Y1, = 77[C] to the exotic integration cycle C such that

Z = Oex S:/ QexpSAY :/ Qexp S Ane. 4.4.1
oM p e p = e pSA1e (4.4.7)

The open Landau-Ginzburg model

So we want to look at exotic integration cycles from the viewpoint of ' = 1 supersymmetric quantum
mechanics, for this we choose its worldline to be L = (—o00,0] = IR_ and its target space Mc the
complexified phase space of 0-dimensional quantum mechanics. We recall its action (C.2.13)

2
o' '
Stop - /dS < Js gljéw)]> = Sphys + /th = Sphys + (h(¢(0)) - h(gb(—oo))) . (4'42)
We first consider an isolated non-degenerate critical point p of the Morse function h. Then we are
interested in the path integral with the boundary condition ¢'(s) — p as s — —oo. That is, we want
to consider the path integral

Fiop(p) = D(s)Dp(s)Dx(s) exp (iASiop(@, ¥, X)) - (4.43)

/4’(*00)6!’,47(0):470
Here we do not have any operator insertions, as they do not change the concepts discussed here. From
section A.4 we know that this path integral calculates a state ¥, (p) in the Hilbert space associated to
the boundary at s = 0. From (4.4.2) we see that ¥ s (p) = exp (—=A(h(0) — h(—00))) ¥top(p). We as-
sumed there are no interpolating flow lines: this means that ¥ s (p) will be Q-invariant: Q% ps(p) =

ehdefh‘l’phys(p) = 0. Hence d¥1,p(p) = 0, both statements are just a consequence of our identification
of Q with the de Rham differential and (C.2.16).*

The fact that the theory localizes on solutions of the flow equation (4.2.7) (with w! = (/)i) means that
Yiop(p) gives a -function with support on the set Cp of all points that are reached by downward flow

*Suppose that there was a downward flow between two points with Morse index p and p — 1, whose classical ground states
we denote by [p), [p —1). Thend|p) = |p—1) #0andd|p —1) = |p) +.... Y1op(p) calculates the Poincaré dual of a family of
flow lines, that contains a subfamily that interpolates between |p) and |p — 1). We interpreted Y1, (p) as a state at s = 0, which
for this subfamily contains exactly the point of Morse index p — 1. Hence we see that d¥,,(p) # 0.
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from p. Note that any flow line is uniquely fixed by specifying one point (say at s = 0) on the flow line,
by uniqueness of flows. Our goal is to use Y1, (p) to define a path integral that is restricted to integrate
over Cp.

p

We now assume that C, is a middle-dimensional cycle in the complex manifold M. This middle-dimensional
cycle is an n real-dimensional complex submanifold, hence it is the zero set of n anti-holomorphic func-

tions, say ' = 0,i = 1...n. This means that the state at s = 0 calculated by the path integral is the
Poincaré dual to Cp:

Yiop(p) = 6(x1) ... o(xM)d" ... dp" = 5(x1) ... 6(x" )yl .. 9" = (x1) ... 6(xT)S(ph) ... 6(p"),

which is what we were looking for. The last equality follows since a d-function for a fermionic variable ¥
is equivalent to the variable itself since [ dips(yp) = [ dipyp = 1. We now recall the logic presented at
the end of section (A.4): to obtain a number we need to pair Y1, (p) with a dual state ¥ and integrate
over M: the number calculated is the value of the quantum mechanical path integral (6.2.2) evaluated on
an exotic integration cycle C = C). ¥ must be given by a form Y inserted at s = 0. If we assume that
Mg is Calabi-Yau$, then M¢ has a non-vanishing top holomorphic form Q. Hence an appropriate choice
for Y is

Y =QexpS = Qilmin(gb")d(pil A...Ndmexp S|s—g = Qi i, (o)™ ... ' exp Sls—o,

where S is the complexified action of the dual theory, a holomorphic function on M. This means

z:/ ¥ /\Y:/ Y:/ QexpS. 445
Me top(P) ¢, ¢, exp ( )

This final compact answer is just a generalization of, for instance, the path integral (4.2.5). As before
the Morse techniques make this a formally convergent expression. Since ‘thys(p) was Q-invariant, it is
straightforward to check Q-invariance of the path integral Z.* The boundary conditions on the fermions
follow straightforwardly from varying the action and forcing the boundary contributions to vanish at
s = 0, the bulk variations are killed by the equations of motion. This gives

3l = 5/(700’0] ds (wiszi + %DS;{) = oo 4 P:0xs=0- (4.4.6)

Note that the fermionic delta functions set the holomorphic parts ¢! = 1/1(1'0) to zero at s = 0, so the

(0,1) part X' has to vanish at the boundary at s = 0, since we only had a constraint on the (1,0)-part of
Pats=0.

S$Note that this is not too constraining, as we saw in the previous sections that in most cases, the duality works if Mc is (almost)
hyperkahler. Since every hyperkahler manifold is Calabi-Yau, our construction here will ’generically’ be applicable.

*Stop is Q invariant since by construction Sp is Q-exact. The fermions are Q-invariant by construction, see (2?). Furthermore
by holomorphicity of S, S and Q) are only a function of (Pi: the supersymmetry transformation {Q,gl)i} = ¢ give squares of
fermions upon variation of Z, hence vanishes also.
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EXOTIC INTEGRATION CYCLES AND GAUGE SYMMETRY

In this section we extend the discussion of the previous chapter to theories with gauge symmetry. The
gauge redundancy introduces subtleties in the classification of critical ‘points’, since they are gauge orbits
of the symmetry. Moreover, the decomposition of a given cycle in terms of Lefschetz thimbles has to be
suitably extended. Having discussed these issues, we will then see how this pairs with localization in the
1-dimensional gauged open c-model, which is dual to gauged quantum mechanics. The generalization to
infinite manifolds of this model will be used in chapter 8.

5.1 Gauge-invariant exotic integration cycles

Suppose M is a manifold with some G-action on it. We shall assume G is compact. We will denote their
complexifications by M¢ and Gg respectively. Again our goal is to use the real part of a holomorphic
function as a Morse function /1, whose critical subsets form G¢-orbits, to find an exotic integration cycle
for the integral

— n ; 1 n
Z—/C:Md xexp(zx\f(x,...,x )), (5.1.1)
where f is a polynomial. This will be complexified to

Z = dzexp S (5.1.2)
C'CM¢

where S now becomes a holomorphic function of the z, and our Morse function will be 1 = Re S. We
denote critical orbits by O¢ and OC¢ respectively.

Free action

The simplest case is when G acts freely on M: G¢ then also acts freely on Mc, and the quotients M/G
and Mc¢ /G are non-singular manifolds again. In that case, the path integral Z can be written as

Z = / dx'exp S, (5.1.3)
M/G

where the measure dx’ can be obtained for instance by integrating over the fibers of M — M/G. In
this case, critical orbits of 1 on M correspond to honest critical points on M/ G, to which we can apply
the techniques developed in section 4.2 again. So how should be interpret this on Mc? Any critical
orbit OS¢ is a copy of Gg, since G acted freely on Mc, and G¢ is isomorphic to the cotangent bundle
T*G.*An example is Gc = GL(n,C), whose maximal compact subgroup is U(#). The Lie algebra u(n)
consists of antihermitian matrices. g~ is then given by all hermitian matrices.

Now the middle-dimensional homology of OCC has rank 1, generated by the zero section of T*G, which
is just G C T*G. So if G acts freely on M, every critical orbit will contribute one classical ground state;
in more mathematical terms they contribute one generator to the middle-dimensional relative homology
of M, analogous to the non-gauged case.

*This follows from the theory of symmetric spaces. If G¢ is the complexification of a compact semisimple Lie group G, there is
an unique involution, the Cartan involution i, that leaves the maximal compact subgroup K of G¢ fixed. This involution also acts on
Lie(Gc ), which splits into the two eigenspaces g* associated to the 4-1-eigenvalue of .. By the polar decomposition of G¢, we then
have g~ x K 22 Gg through the diffeomorphism (X, k) — kexp X € Gc. It turns out that g~ = £*, which shows T*G = Gc¢.
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Non-free action

The more subtle case is when G does not act freely on M: the G-action may have some fixed points
on M. In this case we cannot apply our previously developed techniques to M /G, since as a manifold
it is singular. So we cannot apply our Morse theory techniques there: we need to stay on M and Mc;
we assume that /1 has a finite number of critical orbits on M and Mc¢.* A critical orbit O in M has a
complexification OCC that lies in Mc. Topologically, OC is isomorphic to T*OC¢, hence such an orbit
will again contribute one generator to the relative homology of Mc.

However, we might have critical orbits in M that do not arise as a complexification from a critical orbit
in M. We want to argue that only critical orbits which are semistable matter. Semistable orbits are crit-
ical orbits that admit a point where the moment map ¢ for the G-action vanishes, ug = 0. If G acts
freely on the orbit or the stabilizer is at most a finite subgroup, we call it stable. If a critical orbit is not
semistable, we call it unstablel.

To write down the Morse flow equation, we need a metric on M¢. Generically we can only pick a G-
invariant Kahler metric 8ij whose Kéhler form w is odd under complex conjugation and such that the

G-action preserves w. This gives a moment map . for the G-action on M (see appendix A.2), whose
defining equation is

dugy = wyw, Veg (5.1.4)

The pointe is that y is conserved along Morse flows: dropping the subscript G we just compute

dpy _ dpy dz' a#vdi;__ i kOh i xoh  50(ilmS) ;9(—ilmS)
ds oz ds T gm ds ¢ i ox i ok = TV o TV T
— —ydim S =0 (5.15)

Here we subsequently used the defining equation for the moment map in index notation Ba;ui/ = Viw:,
Z Jt

the Cauchy-Riemann equations for the holomorphic function S, which tells us that for z/ = x' + iyi

dRe S 1 <8Re$ .ORe 8) _ 1 (almS .0lm 8> 1 (_iailmS n dilm S) _0dilm S

oz 2\ axd | oy’ 2\ oy T 2 ay! ox ozl

and likewise that
dRe S d(—ilm S)
ozl ozl

7

the Morse flow equation in local complex coordinates (Zi,le) and the fact that S is G-invariant LyS =
(diy +1yd)S =0,s0Ilm S = % (S — &) is too. Note that 1yS = 0.

Since y vanishes on M, any critical G¢-orbit OO6¢ that is connected to M by a Morse flow is semistable.
Now our original integration cycle C = M for the path integral was certainly semistable, so our exotic
integration cycle will have to consist of semistable cycles too. To see this, we consider for real A the
decomposition C' = Y, nyCy. The critical points labeled by ¢ fall into three categories: either h = 0,
h < 0orh > 0ato. Only h < 0 points contribute, since only those can have upward flows that inter-
sect C where h,i_; = Re (iAf(x')) = 0, since I is strictly increasing along upward flows. Therefore,
if (C,Ky) # 0, the critical orbits o must have a subset where 1 = 0, which follows automatically by

*Note that the number of critical orbits does not have to be the same on M and M¢ (for instance, iA (x3 + x) has no critical
points on the real line, but has two in the complex plane).

TAn example of this is the following: consider Gc = SL(2,C) which is the complexification of G = SU(2). An unstable orbit of
Gc is CP!, which is a homogeneous SU(2)-space. A nonempty topological space X is a homogeneous G-space if for every x,y € X
there is a ¢ € G such that g-x = y). This can be seen as follows: SU(2) 2 SO(3) which acts transitively on S? by rotations.
But S? as the Riemann sphere is diffeomorphic to CP'. So SU(2) acts transitively on CP'. But then G has to act trivially on CP?,
since if 1 = 0 somewhere, it has to vanish identically on CP since the equation y = 0 is G-invariant. This implies that V = 0 for
all vector fields V associated to generators of G by the defining equation for the moment map. We see that such an orbit cannot
be semistable.
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conservation of y along flows and the fact that 4 = 0 on C. This follows from its defining equation (??):
under complex conjugation, the symplectic form is odd, whereas V is even®*. Therefore, y must be odd
under complex conjugation and it has to be 0 on C = M (since y is defined by its derivative, we can
always fix this constant at will). Hence all contributing critical points are semistable. A more explicit
indication that semistability is required follows from equation (5.3.1): the condition for a critical point of
h in that situation is that 4 = 0 at any critical point.

Because O is preserved by G, it will be isomorphic to G/ P, where P C G is the stabilizer of the G-action:
P measures how many fixed points G has on O. If P is at most finite we will call O stable. The reason for
this terminology is that the stabilizer P is a discrete subgroup of G and as a consequence there exists a
smooth covering map 7t : G — G/P. This implies that G/ P does not have singularities. In particular,
the quotient O/G consists of just a point again, just as in the case where G acted freely on O. For
instance, T : R — R/Z = S!, where Z acts freely by addition on IR. The quotient S1/R where R
acts by translation on the circle is clearly a point.

Obtaining exotic integration cycles.

Let (’)l-GC be a semistable critical orbit, where i is an index. It has a subspace (’)iG of points where pg = 0.
Then the Morse flow from OZ-G defines a cycle C;: it consists of all points that can be reached by downward
flow from (’)lG; alternatively, it consists of the collection of values at s = 0 of all possible downward flows

from (’)iG. Then our exotic integration cycle C’ will usually be a subset of ;Lt(_;l (0), and always be a linear
combination

' =Y nc. (5.1.6)
i

Earlier, we determined the coefficients n; by taking intersection products of C with upward flows, because
their relative homology was the natural dual to the relative homology of downward flows. However, in
this case, this does not quite work, because upward and downward flows intersect in an entire orbit OiG:
the intersection number would equal the Euler characteristic of this orbit, which vanishes for a stable
orbit.

This follows from regularization of self-intersection numbers. To compute the intersection number X N X
for a manifold X, we deform the second factor to X’ using some vector field normal to X. This vector
field will have some zeroes in general, so X N X’ consists of a finite amount of points, corresponding to
the finite number of zeroes of our chosen vector field. As we pointed out in the beginning of this chapter,
the graded sum of zeroes of any smooth vector field on X computes exactly the Euler number of X, which
we then formally call the self-intersection number of X.

Since H is a compact connected semisimple Lie group, its Euler number vanishes. This follows easily
from the fact that on every Lie group there always exists a global non-zero vector field: just take any
vector V € g, which under left multiplication dL;,a € G can be extended to a global vector field on G,
which is non-vanishing by the group properties of G. Since the Euler characteristic counts with signs the
zeroes of all smooth vector fields by the Poincaré-Hopf theorem, it follows easily that x(G) = 0 for any
compact connected G.

So to get a nontrivial answer, the appropriate thing to do is to use the dual to the orbit (’)iG, which is any
fiber O/C in T*OF. The upward flow K; from O’ then intersects C; only in the base-point p; of O'C.

In this case we again find n; = (C, K;).

5.2 The 1-dimensional gauged open c-model

In the previous section, we discussed supersymmetric quantum mechanics in the presence of a superpo-
tential. At this point, we generalize that model by adding a gauged symmetry of the target space. We

*By Darboux’s lemma, the symplectic form locally always is of the form w = —i}; dzi A dzl, which is clearly odd under

2o zi, whereas V = Viii + Vi 9 s even.
9z azt



5.2 The 1-dimensional gauged open o-model 39

take the target space M to be Kahler, with real dimension 2n and Kahler form w. Recall that this gives
us N = 2 worldsheet supersymmetry. We assume M has a Lie group of symmetries G that acts on M
and gauge this symmetry. The group action on M is given by a homomorphism 7 : G — Diff(M) and
has associated Killing vectors {é‘fl}* Hence to any y € g we can associate a Killing vector field

Ey) =y (5.2.1)

The moment map of the G-action is denoted by y. Our goal is to describe the 1d gauged Landau-Ginzburg
model, which governs the map ® : L — M, coupled to vector multiplets for the G-action.

One way to construct this model is by dimensional reduction from the ' = 1 4d gauged -model, with
® : IR* — M. The idea is to first reduce to a 2-dimensional worldsheet, then to a 1-dimensional world-
line. In doing the dimensional reduction, we will do an additional topological twist, as we will need a
twisted version of this model with @ : Ry X W — M in chapter 8.

The 4-dimensional field content is contained in dim M chiral multiplets and a vector multiplet. We
choose coordinates y#, it = 0,...3 on R*. From the chiral multiplets (¢/, ®), the -model map ¢ has
components ¢i,i =1,...,dim¢c M, which are local coordinates on M, and the lpi"‘ are Weyl spinors. In
the vector multiplet (A,, x*, X*), the bosonic field is the gauge field A = A,dy" and we have a Weyl
spinor x* with its conjugate. We shall take all gauge fields in the adjoint representation.

Upon dimensional reduction to a 2-dimensional worldsheet Ay, A1 become a gauge field in two dimen-
sions, and Ap, A3 become g-valued scalars. We define the g-valued scalar o = A; — iA3 and its complex
conjugate 0 = Ap + iAj3 To let the model localize on the Morse flow equation, we need to do an A-twist,
using the topological A-model supercharge Q4 = Q. + Q- discussed in chapter 3. In order to do the
A-twist, we assume the superpotential W is quasi-homogeneous: the scalar fields should admit a U(1)
symmetry that transforms W — e Wi this will be detailed further in section (6.3). Q cannot generate
translations, as translation have M 4-eigenvalue +1. However, it turns out that in this case Q is not
nilpotent: rather we have Q%> = [c,.]. Hence, only on gauge-invariant fields and states, Q is still nilpo-
tent: on such states, we can define the cohomology of Q.

The lengthy details of this construction can be found in [10, 11], which we will not repeat in full here.
From our earlier constructions, the results that follow below are exactly that one would expect.

Localization

Localization implies that the path integral localizes to fixed points of the fermionic supersymmetry vari-
ations. For the fermions in the vector multiplet, one finds that this implies that

*F+u=0, Dyo =¢(0) = [0,0] =0, (5.2.2)

where F = dA + A A\ A is the curvature of A, while y is the moment map for the G-action. For the
fermions in the chiral multiplets, this means

= FOW ;o 5 0W
1 Y — 1 - —

0af' + g8 a¢7 0, 049"+ ¢ a9 0. (5.2.3)
The second set of equations in (5.2.2) generically imply that o = 0, so we will assume this from now on. Of
the remaining the last two equations are familiar: they are the perturbed equations for a (anti)holomorphic
map, further perturbed by the presence of the gauge field in the covariant derivative. The perturbation
spoils the 2-dimensional symmetry of the flow equations: we cannot interpret them as ordinary Cauchy-
Riemann equations anymore. This issue will be explored further in section 6.2.

*Recall that any element in g can be decomposed with respect to a basis {¢;} of g, for any y € g we write y = y?{,. Now

by exponentiating, we get for any basis element of g a vector & = %‘r:o nt(exp ty) in TM. For convenience we drop the ~
and denote this vector as &, which is a Killing vector. We'll assume the G-action is effective, so the space of Killing vectors is
isomorphic to g.
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Reduction to 1 dimension

For the purposes outlined in chapter 8, we want to discuss a further dimensional reduction to 1 dimension,
upon which we can interpret (5.2.3) and (5.2.2) as flow equations in the 4° = s direction. We then end up
in the situation familiar from section 4.4 with a 1-dimensional worldline.! The gauge field is broken up
further to a 1-dimensional gauge field Ag and an adjoint-valued real scalar field Ay; in the gauge A9 =0
the flow equations in (5.2.3) and (5.2.2)) reduce to

dA, oh
gt _ iAgE —gifLW, — iA‘;wifaL“l — ifM _ i O Afpa + 2Re W) _ g’ja—h, (5.2.5)
ds ERPYY o) g/ g/ g/
where we see* that we can identify the appropriate Morse function
h = Alps +2Re W. (5.2.6)

So equations (5.2.4) and (5.2.5) define Morse flow on M x g.

Equivariant cohomology, observables and physical states

Recall that observables of supersymmetric quantum mechanics (chapter 7) and the A-model (chapter 3)
sat in the cohomology of the topological supercharge Q, which corresponds to the de Rham cohomology
of the target space M. In the gauged o-model, the generalization of this idea is that observables sit in
a cohomology compatible with the gauge symmetry: the equivariant cohomology of the target space.
Moreover, we saw in chapter 7 that ground states of the theory also corresponded to elements in the
target space cohomology; likewise here ground states will be elements in the target space equivariant
cohomology. Some details of equivariant cohomology are briefly described in appendix A.1. As before, M
is Kahler.

Consider K = M X g. 0 was a generator of the G-symmetry and so we can consider ¢ € g to be the
generator of degree 2 of Sym(g®), the space of symmetric polynomials. We can compute the action of

[DO, 4)’} =y, {DO, W} = Xi(0), (5.2.7)

which are precisely the supersymmetry variations for the chiral multiplets. For the vector multiplet, one
similarly finds that

(Do, Ayl =Aw, {Do,Au} = —Duo,  [Do,0] = [Q,0] =0. (5.2.8)

If this was the entire story, we would now use (A.1.12) as the equivariant cohomology. In our application,
there are now two issues that require a slight generalization of (A.1.12): the complexification G — G¢
and the non-compactness of M, which generally makes i unbounded from above and below.

The modification due to the complexification G — G¢ comes about since we also have the complex
conjugate 0. Hence, we should view ¢ and 7 as coordinates on gc, regarded as a complex manifold. In
doing so, we should replace

Sym(g*) = Q" (gc), (5.2.9)

the latter space consisting of (0, j)-forms on g¢. Here 0 < j < dimg g¢. The grading comes by setting
the grading of 0,7, 7 to be 2, —2, —1. Likewise, we should extend the twisted de Rham operator to

) )
D =Dy+ Dy, Dy = dﬁ“ﬁ + [0,7)" igza. (5.2.10)
* Note that we started from A = 1, which means that we started out with 4 real supercharges (a 4-dimensional Weyl spinor has
2 complex components). After dimensional reduction to 2 dimensions and moreover twisting, we were left with 2 real topological
(scalar) supercharges. Going to the 1-dimensional model, there are actually 4 real, scalar, supercharges again, since in 1 dimension
a vector is the same as a scalar.
*Here we used the Kahler form: 8= 71'(4}17 and the fact that the superpotential W is holomorphic.
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This construction is compatible with the supersymmetry relations [Q, 0] = 0, [Q, 7] = # and the identi-
fication 7 = do: we get only antiholomorphic (0, g)-forms by repeatedly acting with Q. Now a calcula-
tion shows that D obeys D? = EX(U), so we can speak about the cohomology of D on the G-invariant
subspace generated by o, E and its associated complex

oo (QO,Q( . G =
BE= gc) ®Q (M)) , (E,D), (5.2.11)

where Q* (M) is the space of ordinary differential forms on M. The cohomology of D coincides with the
cohomology of Dy on this space. To show this, one only needs to show that the action of D coincides with
that of Dy on E. To do so, it is sufficient to show that DY = 0 implies that ¥ does not contain a factor of
do. A full proof of this can be found in [12].* This tells us that actually all the relevant equivariant forms
in & do not include 7 and do at alll Hence an element of degree 2n + p in the cohomology of (E, D)
generally looks like

w = wal..‘ank].‘.kpo'ul ...a”"dgbkl AL Ndgh, (5.2.12)

where a; are indices on g¢, k; are indices on M, 0 < 2n < dimgge, 0 < p < dimgM and 0 <
2n +p < dimp M. The second issue when we deform the theory by a superpotential /1, such that the
supercharge is deformed to

Q = exp(Ah)Dexp(—Ah). (5.2.13)

Localization by taking the limit A — oo shows that the cohomology of classical ground states is given
by the critical points of the Morse function &, see appendix 7. Physical fields sit in the cohomology of Q,
which is equivalent to the cohomology of D, which in turn is equivalent to the cohomology of Dy, which
is the equivariant cohomology of M.

Recall that & has to be bounded above to find an exotic integration cycle. Hence, we should restrict
ourselves further to the space of differential forms on whose support 1 is bounded above, which we
denote as QZ@o(M)' Hence to ensure that we can apply Morse theory, the twisted de Rham complex
we should use is

G
. 0,0 .
Ghi<oo(M) = ((Qh<oo(9C) ® O} (M) ,D). (5.2.14)
The equivariant cohomology of M is the cohomology HE. , . (M) of this complex: an element is rep-
resented by an equivariant differential form given by (5.2.12), with the proviso that /1 is bounded on its
support.

5.3 Gauge-invariant critical orbits

Using (5.2.6), the conditions for a critical point of h become

oh - oW oh oW

— = (W= ] _— _— = _— = = U. 3.1

Py w]lg (A7) Pk A, U = o9 0, =0 (5.3.1)
This follows by multiplying the first equation by & (A1), and using gi(Al)%{ = Osince W is G-invariant,

we find that éi(Al)wjiCj(Al) = 0, s0 {(A1) = 0. These describe exactly a semistable critical orbit of
h: gauge invariant critical orbits of W on which the moment map y vanishes. W is gauge-invariant and
holomorphic by construction (by definition of the superpotential), so it is invariant under the G¢-action.
Hence, critical points of W are G¢-orbits. We assume there are finitely many critical G¢-orbits, which
are non-degenerate.”

*The idea is that given a form B with DB = 0 containing do, one can always lower the degree in do by shifting the form by
Du for some a: this follows from the term tfo’% in (5.2.10). Note that D automatically eliminates a top do form. By recursion, one
concludes that 8 must be independent of o and do.

*So far, we actually have used only half of all the fermions in our discussion. The field Ay is set to zero, but acts as a Lagrange
multiplier for the constraint that states should be G-invariant. Since the other half of the fermions are all complex conjugate to
the ones discussed here, the discussion for them is analogous. However, to get the right D-variations of those fermions, one has to
deform D just as in (5.2.13). This subtle detail is discussed in more detail in [12], but is inconsequential for us here.

*Note that this what one would expect: vanishing of the scalar potential signals unbroken supersymmetry, while vanishing of
the moment map signals G-invariance. Now each critical orbit will contribute to the equivariant cohomology of M X g.
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Only semistable G¢-orbits contribute to the equivariant cohomology, because only there /i has a true
extremum. If G acts freely on M, the equivariant cohomology of O is the ordinary cohomology of O/G,
which is just a point. Hence a stable orbit contributes a 1-dimensional element to the equivariant coho-
mology of M X g, whose degree equals the Morse index of h at O, which is always % dim M.*

This also holds if G has a finite stabilizer P. If P is not finite, O = G/ P, then the equivariant cohomology
of O equals that of P acting on a point: it is the cohomology of Dy acting on the P-invariant part
of Sym(p*®). lts contribution to the equivariant cohomology of M X g consists of elements of degree
%dimM and generically infinitely many classes of higher degree.

Flat directions at critical orbits

Supersymmetric ground states correspond to minima of the scalar potential, which for the 1d gauged
Landau-Ginzburg model reads:

jdn|? +1(o)? + | [A1, 0] [ + | [0, 7] 2
= 2dW + [u? + 15 (AD P + I5()* + | [Ar, 0] P+ [ o, 7] 2,

v

where |.| denotes the norm associated to 8;jon M. This follows straightforwardly from writing out the

lengthy 1-dimensional Lagrangian in component fields, as can be found in [11].

Classically, a supersymmetric vacuum corresponds to a field configuration for which the scalar potential
¢ vanishes. From the expression above, it is clear that such vacua correspond to semistable critical orbits
of W. Suppose first that we have a free critical orbit, where the stabilizer P is trivial. Then the compo-
nents &, are linearly independent along that orbit and |¢(A1)|? + |&(c)|? is nonzero, so all components
of A and 0 are massive.

|;4|2 = 0 only on the subspace O C Oc¢ by definition of O, so this term gives mass to field configurations
that are not in O¢c — O. Since W is nondegenerate by assumption, the |dW|? term gives masses to all
the fluctuations normal to O¢. We conclude that a stable critical orbit contributes one classical vacuum
and in expanding the theory around such a vacuum, we only have massive fluctuations. Hence we can
again conclude from a more physical point of view that a stable critical orbit contributes just one state to
the equivariant cohomology of N.

However, suppose now that P is non-trivial, that is, O is isomorphic to the subgroup G/P of positive
dimension. Then we can pick a point p € O by (partially) fixing a gauge, which leaves an unbroken
gauge group P. Fluctuations away from O are still massive, since |u|?> # 0 there. But now A and o
have flat directions on O, since there is still an unbroken subgroup of the original gauge group: there is
still a nontrivial subspace O on which W is minimal. Such flat directions mean that A1, o are massless
and cause infrared divergences, as their propagator has a pole at zero momentum.

5.4 Localization in the open gauged c-model

Analogous to section 4.4, we now consider the 1d gauged open Landau-Ginzburg governing maps @ :
L — Mg, withL = (—00, 0] = IR™. We emphasize that M, as always, comes from a complexification.
Our goal is to show how we can localize this model on a path integral with an exotic integration cycle for
0-dimensional gauged quantum mechanics on M. Schematically, we want to find ¥, € H(.;,h<oo(MC)
such that

Qexp S = (¥, ¥iop) = / DXy[To] AQexps, (5.4.1)

To Mcxgxgc

*To see why, recall the Morse function b = Af{p, +2Re W. Now 2Re W has Morse index equal to one half of the real
codimension of O: this follows from the holomorphicity of W and the argument presented in section 4.2; hence its Morse index
equals %dimM — dim O. Now the first term Afp, is a function on O¢ x g and has a critical set defined by 4 = (A1) =0
which leaves only O C Oc¢ unfixed: hence its Morse index is exactly dim O. Hence the Morse index of h equals %dim M. Note
that this is independent of the dimension of P.
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where I'p C Mc is an exotic integration cycle. The subscript g¢ indicates the integration over o, 0.

We assume M to be Calabi-Yau. The boundary condition on @ is that ®(s = —oo) should lie in
a semistable critical orbit of the superpotential i, with a choice of gauge fixing. Recall that the flow
equations (5.2.4) and (5.2.5) defined Morse flow on M¢ X g. With this boundary condition, the path
integral on L computes a state

¥, — / DX exp S 542
top o(_o0)cO eXp oL ( )

in the equivariant cohomology of K = M¢ X g. Here X represents the field content of the theory. Asso-
ciated to O is a cycle Cn C M¢ X g determined by downward flow, its codimension is the index of the
Morse function %dim Mg (which we showed above). Analogous to (4.4.4), Y1) calculates the Poincaré
dual to Cp, which we denote by #[Cp]. One immediate problem is that Cp has the wrong dimension
%dim M¢ + dim g: we need to kill another dim g dimensions in a consistent way. It turns out that this
is achieved by simply setting A; = 0, which is compatible with the boundary conditions at s = 0 and
kills dim g degrees of freedom.

Now we can repeat our approach from section (4.4.1) to represent an O-dimensional path integral over
a middle-dimensional cycle in Mc as a 1-dimensional path integral. We can now pair ¥, with the
canonical holomorphic top-form Q2 on Mc and the complexified action is a H-invariant holomorphic
function S on Mc. Then a path-integral representation of the ordinary integral (5.1.2) is given by the
formal equivalence

Qexp S = (¥, ¥ip) = / DX¥jp A Y = DXy[CO| AF,  (5.43)

T'o Mcxgxgc Mcxgxgc

where T'p = Cp N {A1(0) = 0} represents a middle-dimensional cycle in the complexified phase space
Mc of 0-dimensional gauged quantum mechanics.* Here ¥ is a state in Hg},k@o,g(MC X g), which
contains states in the equivariant cohomology with compact support along Aq and ¢. This is done since
the scalar potential potentially contains flat directions for Aq, 0. With this additional assumption, the
pairing (5.4.3) is formally finite, moreover, I'» does have the right dimension % dim Mc. Explicitly, ¥ is
determined by the boundary conditions on the fields at s = 0. By arguments similar to the ones at the
end of section (4.4), half of the fermions of the chiral and vector multiplets have to vanish at s = 0, as do
the bosons A1,0,0. This determines

¥ = [exp s 84 19)3(x01)8(A)8(1)8(41)8(0)5(@)] oo (5:44

Here A, 1 are half of the fermions from the vector multiplet. All details of the full ’proof” of (5.4.3) can be
found in [12] as an extension of the argument of section 4.4.

*Cp is of codimension % dim Mg, so is of dimension % dim M¢ + dim G. Setting A1 (0) = 0 fixes dim G dimensions at s = 0.
Hence the intersection Co N {A1(0) = 0} has the correct dimension § dim M. Note that the cycle T is a G-invariant cycle and
can be understood as the flow line given by solving the flow equation for i = 2Re W. In the gauged o-model, we had the Morse
function i = 2Re W 4 A{(0) 4, which gives the same Morse function if A1(0) = 0.
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EXOTIC DUALITY: QUANTUM MECHANICS AND THE A-MODEL

In the previous chapter, the use of Morse flows enabled us to find exotic integration cycles that allowed
us to re-express path integrals. In this chapter we come to our first application, we dualize the path
integral of quantum mechanics

/LM Dp(t)Pg(t) exp (i / (pdq — H(p,q)dt)> [Toit), (6.0.1)

where the O;(t;) = exp (iHt;) O;exp (—iHt;) are observables of the quantum mechanical model and
(M,w) is the classical phase space. Here, we need to find an exotic integration cycle in the infinite-
dimensional free loop space LM over complexified phase space.

For trivial Hamiltonian, we will find that the open A-model path integral with suitable operator insertion
computes exactly this quantum mechanical path integral with an exotic integration cycle. We will discuss
what modifications are needed for non-trivial Hamiltonians and illustrate this duality with some concrete
examples, in most detail for the quantum mechanical harmonic oscillator.

6.1 Time-independent quantum mechanics

We shall first consider the case with trivial Hamiltonian H = 0 on a phase space M of dimension 2n.
Then the system is time-independent and the general path integral is of the form

try;0,0;...0N = /LM [ 1Dpi(t)Dgi(t) exp (z'j{p,'dqi> O1(1) ...On(tn), (6.1.1)
i=1

where the p;(t),q;(t) are now periodic functions of t € S! that are local coordinates of a map ® :
S! — LM in the free loop space LM = C®(S!, M), the space of smooth maps of circles into M.
O;(t;) = O;(®(t;)) are functions that are associated to the operators O;(t;). Since there is no time
evolution the only thing that matters is the cyclic ordering of the functions O; inside the path integral.

Note that if we do not insert operators, the path integral will calculate the partition function Z =
tryy 1 = dim H, which just computes the dimension of the Hilbert space of physical states H associated
to quantization of M. It is well-known that dim ‘H < oo iff M is compact. So to get a useful answer,
the system can have only a finite number of degrees of freedom, which generically only happens for
topological theories, which generically have H = 0. We consider this case first.

Complexification

Combining the p’ and ¢’ into a new variable x/. Since w = ¥;dp’ A dg' is closed, we can locally write it
as the curvature of an abelian 1-form gauge field b with curvature w = db. The path integral (6.1.1) then
becomes

. 2n )
tryy O10;7...0N = //\/l HDx](t) exp (l y{b]dx]> Ol(tl) . ON(fN).* (6.1.2)
JL - .
j=1

*Note that for this expression to be well-defined, we need that the integrand is single-valued, most importantly exp (i ¢ bjdxj)
should be, so we would have f bjdxj = 27tk, k € Z. Normally, this would amount to a Dirac-quantization-like requirement on the
connection with gauge field b. However, we are interested in finding an exotic integration cycle, which will also make sense when
no such Dirac-quantization holds.
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Just in the previous chapter, we complexify M to M¢, which is a 2n real-dimensional complex manifold,
equipped with an integrable complex structure | and a notion of complex conjugation, an antiholomor-
phic involution 7. We will assume that the fixed point set of T is exactly M. Furthermore we define a
symplectic structure on M¢ whose real part coincides with w on M C Mg:

Q=w+ia, (6.1.3)

where the closedness and non-degeneracy of Q) imply that a, w are separately closed and non-degenerate.
Here by w we mean a form that coincides with the original w on M, for notational convenience. As an
assumption, T(Q)) = —Q, so that " (a) = a, 7" (w) = —w, so for consistency we need w|xs = 0. On
M we have local complex coordinates (XA,YA),A =1,...,n0on Mc and a set of local real coordi-
nates &4 (for instance, we can take #*~1 = Re X¥ and & = Im X*). The map @ is then described in
local coordinates by &4 (t).

Q) is the curvature of a complex-valued gauge field A = Y, A4dEA, which has real and imaginary
parts
A=b-—ic, a = —dc, w = db,

where b again should be understood as an extension of the original b. Here we can impose the additional
condition that ¢| s = 0 so that the real part of the connection on M is flat, dc|py = a|py = 0, and we
assume that only the (equivalence class) of the trivial connection satisfies this constraint.

Finally, we need analytic continuations of the function O; that do not grow too fast (exponentially) at
complex infinity in order for the path integral to converge. We shall assume that such an analytical con-
tinuation exists; generically we can think of the O; being polynomials in the coordinates EA(t). Now that
we have analytically continued all relevant objects, we want to express the original path integral (6.1.1)
over the loop space U of classical phase space as a path integral over a middle-dimensional subspace of
the total loop space LM:

/ DEA(t) exp (ifAAdgA) O1(1) ...ON(tn) (6.1.4)
CvCLMC
on which this path integral formally converges.

Finding the exotic integration cycle

Referring back to our example with the Airy function, we want to take the real part of the action
h=Re ifAAdgA - ]f cadéh (6.1.5)
ox

as our Morse function. Here & will be the worldsheet of the dual o-model, which will satisfy 9% = S'. h
is unbounded from above and below: if we redefine ¢4 using some A € R as

A() > EA() = EA (M) = g (1) — dZ'A(t) = AdE(t) (6.1.6)

we see that we can arbitrarily rescale h. We recall that & should decay to —oo at complex infinity to keep
the path integral formally convergent, in particular, 1 should be bounded from above on our integration
cycle. Our first step is to find the critical points of h = § cAd&?, which follows from solving 6h = 0.

B
Sh :]f 5&4a pdc® :?{ 5t % — o, 6.1.7)
o% 0% dt

we recall that a = dc. If a is non-degenerate and non-trivial, 6 = 0 will vanish for any 5¢4 only if
deB(t) = 0 for all t. Hence, critical points of & correspond to constant maps ® : S' — {p} € Mg,
which agrees with intuition since the Hamiltonian is trivial (Hamilton’s equations of motion then say
that all coordinates are independent of time). This implies that the space of critical points is a copy M¢

*On flat C", T corresponds to ordinary complex conjugation, which indeed is an involution: 7% = 1.
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of M embedded in the loop space LM¢ of Mc. So to get an exotic integration cycle, we consider flow
lines that start at a middle dimensional cycle V' C M. To find these flow lines we need to solve the flow
equations for &4 (t). Introducing a flow parameter s € R_ = (—o0, 0], now the objects that are ‘flowing’
are functions ¢4 (s, t) that are maps from the half-cylinder C to M¢, & : C = R_ x S! — M. This
is a slight generalization of previous situations, where the ‘flowing objects’ were fixed position coordi-
nates.

To formulate the flow equations for the maps &4 on the free loop space LM, we need a metric on its
tangent space TLM, recall for instance the generic form in (4.2.7). For any loop { € LM, a tangent
vector is a section in I'({*TM¢). Picking a metric g4 on M induces a metric on TLM¢ by setting

ds? = ) dtgan(§()3c (037 (). (6.18)

Here, by 6¢/(t) we denoted a 1-form on LM . Note that (6.1.8) includes an integral over time, so that it
correctly isamap G : TLM¢ x TLM¢ — R. Now (6.1.8) converts a 1-form 6&4 (t) into its dual vector

g4B aég(t) while killing the integral over t. The variation of a function i[&4(t)] is given by 55%}1(1‘) 5eB (1),
AB _oh )

whose dual is g 528(0) A — grad h. Introducing a flow parameter s the flow equation is therefore

written as
¢ dgi(s,t) 8§ (s, t)  ap Sh g 9ES(st)
ds - ds iy S = T T m ey T 8 e

The boundary condition at s — —oo is that &(s,t) should limit, independently of t, to a point in
the middle dimensional subspace V' C M, and that ¢#(—oo,t) is regular. The downward flow lines
determined by this flow equation then furnish an exotic integration cycle Cy for the path integral (6.1.4).
Since there is only 1 critical subset of I here, we do not have to worry about interpolation issues between
multiple critical points (subsets).” Now we choose the metric gAp such that it gives a compatible triple
(I,g,a) such that

- = ¢"Bapc (6.1.9)

is an almost complex structure. The flow equations then simplify to

A C
987 (s,t) _ . % (st) (6.1.10)

0s ot
If I is integrable these are the Cauchy-Riemann equations for &4 (s, t), with holomorphic coordinates
w = s + it} If I is not integrable, the flow equations (6.1.10) are the defining equation for an I-pseudo-
holomorphic map. For this class of ¢4, although I is not necessarily integrable, the flow equation is
well-behaved and elliptic. In particular the flow equations are invariant under conformal mappings, so
we can set z = exp w = exp(s + it), which maps w € C — z € D*, where D* is the unit disk in the
complex plane minus the origin. The fact that (;‘A(—oo, t) was well-defined and independent of f means
that &4 = &4 (2), as a function of z, extends continuously over z = 0 to a map D — Mq.

After this conformal transformation the exotic integration cycle is defined by the boundary values at
s = 0 of all I-pseudoholomorphic maps ® : D — M where ®(z = 0) sits in the middle-dimensional
cycle V.C M¢.

*Moreover, the flow line is stable under perturbations of the metric gag: if we perturb our choice of metric, the resulting cycle
Ci, determined by downward flow will be homologically equivalent to Cy, since we cannot change global properties of homology
cycles by small perturbations.

fLocally we can always choose a basis of M such that I is represented by a dimg M¢ x dimg M matrix with 2 x 2-blocks
on the diagonal of the standard complex structure on R2. In every 2 x 2-subspace the flow equations then look like the standard
Cauchy-Riemann equations

aéi _ Bé”l B(j"“ aéi YAl 7

0, (6.1.11)

2 ot ' as  at’ w
which tells us Z = & + i#*1 is a holomorphic function of w = s + it.
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Figure 7: Embeddings of the semi-infinite flow cylinder C and the disk D into M¢, where
dC = 9D = S! represents a loop over which we integrate in (6.1.4).

Note that we are applying Morse theory on the infinite-dimensional space of loops on M¢. What is
the validation of this? It is the elliptic nature of the flow equations: the Cauchy-Riemann equations are
elliptic.

We now want to analyze the structure of M further. Note that () is a holomorphic 2-form, it is a
form of type (2,0), with respect to the integrable complex structure | on M, so w = Im ) is of type
(2,0) @ (0,2). I = g~ 'w however, cannot be of type (2,0), as the metric g cannot be of type (2,0) in J.
Hence, we see that I and | have to be inequivalent complex structures. One natural way in which such
a situation is feasible is when M is an almost hyperkdhler manifold: in that case we can choose I, | as
part of a triple of almost structures I, J, K on M, of which at least | is integrable and we set I] = K.
Especially I, K do not have to be integrable. Also note that dimensions always work out: the complex-
ified phase space M¢ always has 2 - 2n = 4n dimensions, as required for (almost) hyperkahler manifolds.

To summarize, if we pick I such that wj defined through the compatibility equation I = gilwl is of
type (1,1), we see that the integration cycle Cy is a subset of all possible boundary values of [-pseudo-
holomorphic disk embeddings into M. The A-model can be localized exactly on I-pseudoholomorphic
maps. Combining all this, we deduce that the quantum mechanical path integral (6.0.1) can be expressed
as an A-model path integral with a suitable operator insertion to impose the constraint that ®(0) € V.
Note that this operator insertion will be enforced on us by the selection rules for the A-model.

The dual A-model path integral

With this information, we have shown that a certain open A-model path integral is dual to (6.0.1). Namely,
the localization property and the choice of worldsheet allows us to uniquely identify the dual A-model
path integral as

o0 ol ) 0)

QM path integral over exotic cycle

= / DEDxDy exp (—i[f") -Oy(z=0) (exp (ijq{AAd(jA) H(’),), (6.1.12)

A-model path integral

where
. 1
1 = —/DYA/\*YA—z/D)(A/\Dt/JA—i—ZL/DRABCDl/JAl/JBXC/\XD (6.1.13)

is the Q-exact A-model action shifted by a constant term and we wrote the flow equations (6.1.10) in
form notation as YA = d&4 — *Ié“d(jB = 0, where * is the Hodge star acting as *ds = dt, xdt = —ds.
It is clear that this path integral localizes on YA = 0as e — 0, which implies that only solutions to
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the flow equation contribute to the path integral upon localization. Here the superscript ’top’ refers to
the fact that we included the first half of (C.2.13), after performing the Bogomolny trick. Again, it is also
obvious from the fermionic supersymmetry variations of the A-model (3.3.3) that this model localizes on
the flow equations YA = 0.*

The operator insertion Oy (z = 0) is the Poincaré dual 77(V) to V, which after localization leaves only
those disk embeddings that map z = 0 into V. Note that the degree of Oy is already determined by
the index calculation (3.3.9), which shows that for a flat target space the degree of the operator insertion
should dimg M, that is, it is middle-dimensional in M.

After localization we are left with the integration over the boundary of all holomorphic disks that con-
tribute as € — 0: those disks that have their center mapped into V. The residual path integral is just
the quantum mechanical path integral with an exotic integration cycle.

Quantization and the A-model

At the special value € = 1 a straightforward calculation shows that the cross-terms in Y 4 A *Y? cancels

against ReifAAd(;‘A. The idea is that in evaluating YA A Y4, the cross term ZwAB%g coming
from the Bogomolny trick is exactly the Morse function i = Re A. This is explicitly shown in appendix
B. This term then cancels with the factor of h contained in the boundary contribution ifac AdEA. In
that case we are left with the term i § badEA, which indicates that the open A-model is coupled to a
brane: the boundary of the disk couples to a gauge field b that has curvature w = db. Since the support
of this brane must be M as the critical subset of & was a copy of Mg, this brane must be the canonical
coisotropic brane B, as discussed in section 3.4.

Now suppose that we took as our worldsheet the finite cylinder Cy = [—35,0] x S, that is, we would
only consider flow lines for some finite time. Then we can choose the boundary at —3 to lie on a La-
grangian rank-1 A-brane B, which must be supported on a submanifold of M, which is Lagrangian
with respect to Im QQ = w. Let us choose £ = M and B in a way compatible with the symplectic
form Im QQ on M. We shall describe the latter statement below. Using the categorical interpretation
that topological A-branes are objects in the Fukaya category F°(M) and open genus 0 A-model stringst
are morphisms, as discussed in section A.4, this leads to the interpretation that at € = 1 we can think
of the exotic A-model path integral as calculating a trace in the space Hom(B, B..) of all open strings
of genus 0 stretched between B, and B... As explained in [17] and [14], Hom (B, Bc) is exactly the
Hilbert space H of physical states associated to the original phase space M in the A-model picture of
quantization. With these prescriptions, the dual A-model path integral computes exactly the partition
function of quantum mechanics on M.

In the limit that § — oo, we recover the case that X is a disk D. The slight subtlety is that in this case the
end of the cylinder at § = oo (the center of the disk) can lie in any middle-dimensional cycle V in Mc.

*A heuristic way to see that the A-model path integral is the correct one is to write a formula like:

DEA(H) exp (i % AAd§A> Hoi(ti)

./CVCLMC
- / DEA(s, 1)0 (atgf‘ + I,?&SC,B) o (gA(_oo,t) € v) exp (ifAAd¢A> [Toit) (6.1.14)

We promote the &4 (t) to a function of two variables and put in a delta-functional that picks out only those maps ® that satisfy
the flow equation. The role of O should be clear. The first delta-functional can be written in terms of fields by using a Lagrange
multiplier field T for the constraint U4 = 0. The path integral then becomes

‘/DTA(s,t) /cv DB (s, 1) exp (1/D TA/\UA) (6.1.15)

Integrating out the T field by completing the square and adding fermions to cancel a determinant coming from the non-trivial
argument in the delta-functional, one obtains exactly the A-model action (6.1.12), see also [12].

*Note that we chose (M, Q) by construction such that M was Lagrangian in M¢ with respect to Im Q = w.

¥Note that here we are a bit ambiguous for brevity: by string, here we mean the A-model that is not coupled to worldsheet
gravity, not the full topological string.
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For any V the path integral can then be interpreted as some trace, however, it is in general not necessarily
the trace in the space of physical states associated to quantization on M. In our constructive approach
however, in the limit § — oo the dual A-model path integral clearly retains this property. Especially, we
can freely choose V to exactly be the support of B. In that case, in the limit we retain the interpretation
of the dual A-model path integral as the partition function of quantum mechanics on M.

In the A-model picture of quantization, the space of physical states Hom (B, B..) arises as follows. The
idea is to start with a choice of complexification (M¢, Q) of (M, w) such that Im Q| oy = w. One then
chooses B such that it is an A-brane with respect to Im Q) as in (3.4.14). When the target space has a
hyperkihler symmetry, this means generically that the curvature of the gauge field on B, must be Re ).
Complexification depends on a choice of complex structure I on Mc: this indicates that there can be a
lot of inequivalent choices for B on M¢. So generically, we want B, to be an A-brane with respect to
the chosen complex structure I.

Regarding M as a symplectic manifold with symplectic structure Im (), we can pick a Lagrangian
submanifold £ = M. Quantizing the space (B, Bc:) of open strings that end on B, B gives
H = Hom(Bg,Be).! An inner product on H can provided by using complex conjugation and CPT
symmetry of the A-model. Note that the inherent ambiguity of this quantization procedure lies in the
choice of L. However, the most straightforward connection to familiar types of quantization comes from
choosing L = M.

Analogously, the space of observables is furnished by Hom (B, Bcc), which corresponds to the quantiza-
tion of the space of holomorphic function M. The details of this entire procedure can be found in [14].
There is yet no full proof that quantization using the A-model is in general equivalent to other ways of
quantization, such as geometric quantization or deformation quantization. However, it has been shown
in [14] that the novel method reproduces known facts about SU(2) and SL(2, R) representation theory,
by studying the A-model on the complexified 2-sphere.

To summarize: constructing the A-model path integral dual to the quantum mechanics on M actually
gives a path integral derivation of the new way to define quantization of M by using the open A-model.

6.2 Including time-dependency

Now we treat the more general case where the Hamiltonian is non-trivial, so there is non-trivial time-
dependent behavior of the system. As before, we want to compute traces, so we take the time parameter
t to be periodic with period T, so the expectation value of a set of observables becomes

Jim DP,‘(f)in(t) exp (l / (pzd% — H(pi, q,)dt)) Ol(tl)OZ(tz) - ON(fN). (6.2.1)

We assume that the Hamiltonian can be analytically continued (note that any polynomial real function
can be analytically continued and most Hamiltonians used are of that type); we write for the complexified
Hamiltonian H = Hq + iHy, where Hy and Hj are real. We emphasize that H is a complex function
with respect to the complex structure | on M. After analytic continuation, we obtain

/ DEA(t) exp (:74 (Aadgh(t) - Hdt)) 01(1)0s(k)...On(ty).  (6.2.2)
CyCLM¢ .
The Morse function is given by the real part of the action

h= jf (cAdgA + szt) . (6.2.3)

We want to integrate over a middle-dimensional subspace Cy C LM, determined by downward flow
from a subspace V in the critical set of h. Before complexification, critical points of the action are given

*Specifically, one quantizes the zero modes of open strings that satisfy the right boundary conditions at their end points. This
zero mode quantization corresponds to quantization of M, with a prequantum line bundle &.
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by solutions to the classical equations of motion: solutions to the Hamilton equations. After complexi-
fication, critical points correspond to solutions to the real part of the complexified Hamilton equations;

namely using 5 5H
_ CA A B 2
6h = d t)o f)
7{ 525 ¢%(s,1)a¢" (s,t) + 74 528

and a = dc, we find that critical points 5h = 0 satisfy

5D ———= _dt6EB (s, 1) (6.2.4)

dei (s, t) 6H,
=— , 6.2.5
TBAT gt 5ZB(s, ) (6:2:5)
which is the imaginary part of the complexified Hamilton equations
deB (s, t) oH
QO = — . 6.2.6
AP 9EA (s, 1) (6:2.6)
The flow equations become
oA Ap Oh " dgC 0H, 4 dE© 9H,
=2 = _— == =1 — —=. 6.2.7
95 8 sgB = 8 \mCyr T am C T 9, (6.27)
Here again we choose g4p on M such that we have the almost complex structure IAC = gABaBC. But

in this case the term involving Hj perturbs the Cauchy-Riemann equation, therefore we need to extend
the dual open A-model with a nontrivial superpotential W: this model is called the open A-Landau-
Ginzburg model. In the A-Landau-Ginzburg model, the localization equations read:

i A
9 W . (6.2.8)
ow o
where (w, W) are worldsheet coordinates and ((pi,gb?) are target space coordinates.* Using w = s +
it, 0z = % (0s + i9¢), the above equation can be written as
op a<pl 0
_— =—i-——2 W+ W 6.2.9
s i 8" 5 ¢z( +W). (6.2.9)

Combining ¢(s, t) and (,bz(s, t) into the real coordinate &4 (s, t), and using (W + W) = 2Re ;W we get

Ei_ g% 45 9

(4Re;W) (6.2.10)

3s "or 8 9eB
upon which we make by comparison with (6.2.7) the identification
Imﬂ-[ = Hp; = 4Re;W, (6.2.11)

where by the subscripts I, ] we emphasized that H is J-holomorphic, while W is I-holomorphic. So if
constraint (6.2.11) is satisfied, quantum mechanics with non-trivial Hamiltonian is dual to the open A-
Landau-Ginzburg model.

This last observation implies that the duality only works if M¢ possesses special structure so (6.2.11) is
satisfied. Since we can always define the almost complex structure K = I], M¢ generically must be
almost hyperkdhler: whereas | is integrable by assumption: I, K can be non-integrable almost complex
structures.

*This equation needs proper interpretation when the canonical bundle of T is not trivial: interpreting ¢’ as a scalar, the first
termis a (O, 1)—form on X, whereas the second term is a worldsheet scalar. In a local trivialization, we can identify these, but we
cannot do so globally. In general, we should think of (pi as a section of a line bundle, upon which such an equation makes sense
globally. However, in our application X is the cylinder (see the discussion after (6.1.11)), whose canonical bundle is trivial, so we do
not worry about this here.
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In [12] it is shown that if M is honestly hyperkahler, the generic case in which the duality holds is
when M has a symmetry generated by a Killing vector field V that preserves the hyperkahler structure
and H is the moment map in complex structure I for this symmetry. Its Lie-derivative Ly = diy + tyd
annihilates the symplectic forms wy, wj, wg compatible with the complex structures I, ], K. Because
a symplectic form by definition is closed dw = 0, for this requirement we only need that the interior
contractions tywy, lywj, lywg are closed. Then, locally we can determine the moment maps (see section
A.2) for the symmetry generated by V:

du; = ywy dy] = lywj dug = tywg. (6.2.12)

It is a result (see reference [23] in [12]) that the quantity v; = wu; + ik is I-holomorphic, likewise
vy = pk + iy is J-holomorphic. So setting H = Hy + iHp = iv; = —puj + ijig automatically shows
that we satisfy (6.2.11): we have Hy = jig = 4Re W with W = — 4L

The idea of the proof is that the hyperkahler structure of M¢ and (6.2.11) are highly constraining. From
the fact that Hy + iHj and w + iw; are J-holomorphic, one finds that (1 +iJ*)(d(H; +iH) = 0 and
JH(wk + iw; = i(wg + iwy). From (6.2.11) one sees that dH, = I'dS, where S is some I-holomorphic
function. Now one can always find a vector field V that generates a symmetry that preserves the hyper-
kahler symmetry, such that (Hy, Hp, S) forms a triple of moment maps for V. Explicitly, V = wlzlde.

In general, there may be topological obstructions for M¢ to admit such an almost hyperkahler structure.
This can be understood from the point of view of holonomy. M¢ is a complex manifold of real dimension
4n by construction, so it possesses U (41)-holonomy. In order to admit an almost hyperkahler structure,
the structure group of the tangent bundle must be reducible to Sp(n). So there can be topological ob-
structions that are measured by characteristic classes to admit such a reduction. We will not go into this
further here, our examples will be hyperkahler from the start, so we do not have to worry about these
subtle issues here.

Now the most simple examples of hyperkéhler symmetries are given by various U(1)-actions. For in-
stance, the simplest example is choosing M = S? and its complexification: the rotations generated by
SO(3) restrict to S?. Taking rotations along some axis e, the associated moment map is just the spin
about e [12]. Another example is the Taub-NUT space 7 (9.2.2) admits a hyperkahler symmetry by rota-
tion of the circle fibers. Another example is given by toric hyperkahler manifolds (torus fibrations), they
can arise as complexifications and also have hyperkahler symmetries induced by rotations on the torus
fibers.

6.3 Dualizing the simple harmonic oscillator

We have seen that only Hamiltonians that are moment maps for a symmetry that preserves the hyper-
kihler structure on M can satisfy (6.2.11). On flat IR?, the simplest such symmetries are given by
translations and rotations. For the latter, the moment map is given by the Hamiltonian of the simple
harmonic oscillator, which is just H = % (pz + qz). Its partition function is standard: the Hamiltonian

has spectrum E; = (i + %)h,i € Z >, from which we have in Euclidean signature

& .1 _exp(—pn/2) 1 B—iT 1
Z= ge"p (ﬁ (1+ 2) h) 1 _exp(—ph)  2sinh(Bh/2)  2isin(RT/2)

Here we will construct in detail the dual open A-Landau-Ginzburg model. The reference for part of this
material is [15].

The open A-Landau-Ginzburg model

Since inserting observables for the simple harmonic oscillator does not change anything essential, we
focus on just the partition function Z of the theory. We want to express Z in terms of the open A-
Landau-Ginzburg model in the presence of a canonical coisotropic brane B, which governs embeddings
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® of the half-cylinder C = R x S! into the complexified phase space M¢ = (R?)¢c = C2. Our goal is
to make sense of the equality

Z= DEA(t) exp <i /S (Aadg? - Hdt))

CyCLM¢
_ /A DEA(s, ) Dy, Dyp_ exp (—sff;ﬁ LG) exp (i ]gc (A AdEA — Hdt)) : (6.3.1)

Here S represents the topological twisted action expressed of the open A-Landau-Ginzburg model and A
represents a boundary condition on the worldsheet embeddings that are admitted in the path integral,
which we will discuss below. Note that no operator insertion is necessary since the Euler number of the
half cylinder is 0, which together with the flatness of M makes the selection rule (3.3.9) trivial. Any
optional operator insertions cannot carry any net axial R-charge. Twisting the model is not straightfor-
ward as it cannot always be done. For the simple harmonic oscillator, however, an appropriate twist is
possible, which we discuss below.

We choose local coordinates on the target space are (cpi, (p?),i =1,...,2n which are I-holomorphic /
antiholomorphic, and there is a superpotential W, a holomorphic function of ¢'. The standard Landau-
Ginzburg action is an extension of the ' = (2,2) o-model action:

Sic = /C 2w (2g;¢'0¢) +2g70,Wo; W + ¢!,y DidW + ¢!, ¢/ D)
b [ a0 (Lguut Dt + L g D + Ry v,y ¢! (63.2)
. 8w Paly T 58wy Pul— T RpgP Y -9 3
and the fermionic supersymmetry variations are likewise extensions:
Sl = —&-du' —ia pr Tyl —inrgIOW, 0y = —a_0ug’ — ks i Tyl — i gToW,
Syl = —& ¢’ —ia_ i Tyl +in_g"oW, 6y’ = —aidg¢’ —ik_yi Tyl +ia_gloW.
Note that by redefining the phase of W one can account for unwanted factors of i.

Hyperkahler structure

Before we discuss the exotic A-twist, we first fix a hyperkahler on M¢. We take coordinates (p,q) on
the non-compact phase space R?, which double to

(p1, P21, 92) = (8,828,284, (6.3.3)

which we view as real coordinates on the flat complex space C> = TH. Using the quaternionic struc-
ture, C2 naturally has a hyperkahler structure generated by three complex structures I, J, K. In matrix
representation I, |, K are given by

0 0 -10 0 -1 0 0 0 0 0 1
00 0 1 1 0 0 0 0 0 1 0

=143 0 o ol 7510 0 o0 -1 XK= 0 100/ ©34
0 -1 0 0 00 1 0 1 0 0 0

for which holomorphic coordinates are

I|wm=pi+ig=¢"+i | | up=p2—igp=3>—ig* |
Jla=pitipp=8+it® |21 | z=q+ipg=88+il* | 2
K|vi=pi+igg=¢"+it* |71 | m=pa+igg =2>+i® | &y

We follow here the conventions stated in the previous sections. Therefore, the simple harmonic oscillator
Hamiltonian H = % (pz + qz) is complexified using J-holomorphic coordinates to H = % (z% +Z%). Its
real part restricted to pp = g2 = 0 obviously equals H. To satisfy (6.2.11), we have

1
ImH =Hy =4Re W = Hy = p1p2 —q1g2 = W = Zuluz. (6.3.5)
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We write the components of I, ], K-complex symplectic structures as
Q) = wj +iwg, Q) = wy —iw, Qg = wy +iw.
QO = w +ia = db —idc is [-holomorphic, so we can identify
ReQ=db=w;=gl=1, ImQ = —dc=—wg =—gK=—-K. (6.3.6)

To correctly identify b, ¢ after the complexification in complex structure J, we need to write

fpdq = %f(vdq —qdp) — %f(dez —2dz1) = f(b — ic) dg”

Here we symmetrized by integration by parts, in order to correctly get all the components of wj, wi
right. We then have that b, ¢ can be identified as

bA — %(_63, (:4’ éll _é'z)’ CA — %(64’ 63/ _(:2’ _61) (637)

It is straightforward to check that H is indeed the moment map for rotations. The vector V that generates
rotations is

0 0 0

V= *Z]E +ZZE *218722 + ZE,

(6.3.8)

the flow of V is described by the system Z'[a% =V,1=1212 A representation in forms of Q] is

dz! A dz? (just the J-complexification of dp A dg). We claim that 1 = ivj, H = —pj, Hy = pg, where
dvy = 1yQ)j and vy is J-holomorphic. For completeness

Qp = duq Nduo, Q] =dzy Ndzp, Qg = dvy Ndos.

Using lower indices we have
1 2 2
id (21 + ZZ) = z1dz1 + zpdz, lyQ] = z1dz1 + zpd25.

So writing H = iv}, we identify v; = —% (23 +23) = pk +ipr so ug = Im H = Hy = p1p2 + q192.
Note also that the matrix coefficients of w; = Re () correctly correspond to I and —wg = Im ()
likewise corresponds to —K. It is obvious that restricted to M, Re H|yq = H is the moment map for
rotations generated by V| 4.

The exotic A-twist

The obstruction to a successful A-twist are the terms in (6.3.2) mixing fermions and the superpotential,
including lpi+¢LD;87W, which transforms after the standard A-twist (3.3.1) into lp;XfD;a]—.W, which is
no longer Lorentz-invariant on the worldsheet. There are basically two ways to remedy this problem: use
the quasihomogeneity of W to introduce an additional twist, or multiply the p1pW term by another holo-
morphic section that makes the offensive term Lorentz invariant after twisting. Since our worldsheets
will always be disks, the only holomorphic sections are constants, and so we cannot use this trick.

These methods are not equivalent, as not all situations allow the first twisting: it is still an open problem
to find the generic situation in which an A-twist is possible. When the phase space M can be seen as
the total space of a fiber bundle, a modified A-twist is possible. We will demonstrate this for the simple
harmonic oscillator.

Note that M¢ = C? admits a U(1) x U(1) group of rotations of the coordinates (11,u5) € C2, under

which W — ¢/®W. We want to use this extra symmetry, whose generator we denote by Q to introduce
an additional twist. This approach is discussed in [15]: we can view C? as the total space of the trivial
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line bundle C — C, where the general form of the superpotential is W = p,s?,a = 1, where p, are
fiber coordinates and s? is a section of the dual bundle C* — C. Here, we can take

@P = uy as the fiber coordinate and ¢* = 1, as the base coordinate. (6.3.9)

thought of as a section of the dual space C*, which is isomorphic to C. From now on, we take i = 1 =
p,i =1 =P as the fiber indices and i = 2,i = 2 as the base index.

First, one can reformulate the twisting procedure from chapter 3 a bit, by using

! Fy+ Fy). (6.3.10)

QR:%(FA—FV)/ Qr = =5 (

In the standard A-twist the new bundles are then determined by tensoring the old ones with L' =

11 _ 41
K*%QRK+2QL, whereas we tensor with L” = KT2QRK 29 for the B-twist. This is easily checked:

A-twist | B-twist

Generators Fy F4 Qr Qp L L LL | LoL"
Q,y- -1 1 0 1 KY2 KO N C X
Q.9 1 1 -1 o0 &7 g C C
0. 1 -1 0 -1 K¥2 KgK Y| K c
.y, -1 -1 1 0 K/* k12gK % T

Table 2: An overview of U (1)-charges and the new bundles after the A-twist and B-twist, using K~ = K.

This can be compared to table (2). The idea is now to use the extra U(1) symmetry generated by Q to do
an extra twist, namely to define

QR =Qk-Q, Q1 =0.-0 (63.11)

~ /fl /
and tensor the old bundles by L = K~ 39kK2%L. The choice here is to do the exotic A-twist only on the
fiber coordinate, while the base coordinate gets the normal A-twist. All the U(1)-charges of the fields
are listed below.

Qr | QL Q L Q}q =Qr— Q Q/L =Qr — Q L®L | New fields
g [0 [0 [ 10 —1 -1 K o7
Pl o] o|-1]0 1 1 K Z
¢p . 4>p
ph | 1] 0| 1]|K2 0 -1 K ?
Pl-1| o0 |-1|kK2 0 1 C X7
1
Pl o | 1] 1 |K? -1 0 C xP
P = _ .
W' | o 1] -1 & 1 0 K P
P> ol o]o]o 0 0 C o'
| 0] 0| 010 0 0 C P!
21100 |k 1 0 C e
2| 1] 0 | 0 | K2 —1 0 K 2
1 —
tpg 0| 110 Kj 0 1 K %
210 |-1]0 |K? 0 —1 C X2

Table 3: The exotic A-twist, regarding C? as the total space of a fiber bundle, with the sleight of hand
that K transforms like K.

Note that the fiber coordinates now become Lorentz vectors and can no longer be used as observables
anymore, as we would have to use worldsheet metrics to contract with the Lorentz indices. This seems
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a bit unnatural, we can only use the extra phase space coordinates as observables now (the old ones
U] = p1 + iqq are twisted to vectors here. This is a matter of choice though: we could also have chosen
to view uy as the fiber coordinates, in which case the old phase space coordinates would remain good
observables.

Now W is a holomorphic function of the 471: in particular, we have that W = %4);74)2 = %ulug. Under
the new Lorentz group, the term ... 4 CQ_@CD;B;«W sits in the bundle K°, so is a Lorentz scalar on the

worldsheet. This is easily checked: since the target space is flat, this term reduces to ggg{aiajw. The
only nonzero terms are

T (P R 3T ) = L (R R D). (631

Using table (3), these are all worldsheet scalars again: note that the Lorentz index structure is consistent.

It is an easy check that the fermion kinetic terms l[Jf_Dleg_ =+ ... remain worldsheet scalars too. This
makes the topological theory well-defined again. It is an easy check that all the other bosonic terms in
the Lagrangian remain worldsheet scalars after the exotic twist.

The topological action and coupling to the B..-brane

Expressing the action in coordinates (s,t) € (—00,0] x S! with w = s + it on the half-cylinder, one can
check that at € = 1 cross-terms in the bosonic action cancel with part of the complex boundary cou-
plings, which indicate the presence of the canonical coisotropic brane as in section 6.1.4. The appropriate
topological twisted action of the open A-Landau-Ginzburg model is

s = /C dw (28,5 (3¢' + g*0gW ) (09 + W) + ./ DiyW + ¢ D)
i i 7 kT
+ [ o <2gwéti€1 + 58wt Dul” + Rijkzéiéiék-é’—) - (63.13)

where we denoted the twisted fermion fields collectively by . The purely bosonic part contains cross-
terms:

— . E —_ - fk " — . - T JR—
2 /C drwg; (3" + g W) (9g] + g W) =2 /C dw (399047 + g0, Wo;W)
— 2/ d>w (aW + 5W> (6.3.14)
C
where 0 = % (0s — i9¢) ,0 = % (0s + i9¢). The cross-term simplifies to
. 0
2/ o (W +3W) = 2/ dsdt (20;Re W — 2idym W)
C -0 JS

The second term is 0, by the periodicity of t € S, whereas the first integral equals 43%C dtRe W (we
assume that Re W vanishes at s = —o0). So we see that at € = 1 the term 4 fac dtRe W cancels against
the boundary coupling 3§ac Hydt =4 fac Re W in (6.3.1), using the identification (6.2.11).

Hence at € = 1 the path integral (6.3.1) simplifies to

Z= /AngDngDg_ exp (—SarLc)exp (i ygc b,ﬂqﬂ‘) exp (— /ac int) .

It is clear that at this value of the coupling the model is again coupled to a canonical coisotropic brane
through the gauge field b. It is a slightly surprising result that in the presence of a unitary coupling to B,
there are no worldsheet instantons: in that case all the contributions come from perturbative calculations,
as shown in [16, 17]. However, the result cannot depend on the value of €, the result at € = 1 should
correspond to the result obtained by localization € —> 0. Note that at € = 0, worldsheet instantons are
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allowed again, as the model is not unitarily coupled (the coupling is i § (b — ic)d¢) to Bec anymore.

Because M¢ = C? has an additional hyperkahler structure, the classification of topological branes is
richer, which we demonstrate here. The requirement for B.. to be an A-brane in some complex structure
X is that w;{ldb = w;(lw is an integrable complex structure. A B-brane is characterized by the fact that
the curvature of its gauge field is of type (1, 1) with respect to X, see for instance [17]. The curvature of
our brane is db = w = wj = gl = I since g is flat. One finds that

(~wlwp)?=+id,  (~wjlw)?=-id,  (—wglw)? = —id,
from which we see that B is not an A-brane in complex structure I, but is in J, K. Note that for a
vector 7' aa, to be of type (1,0) with respect to a complex structure I means that I]v g = =ol\/—

However, for covectors w]dxf, one has to use the transpose of I: a covector or dlfferentlal form is of type

(1,0) when (I*)! wldxf V—Tw;dx'.

Hence, we check that in complex structure I, we have that I'w;I = +w;j from which we see that w = w;
is of type (1,1) with respect to I, which indicates it is a B-brane in complex structure I. So our brane
with db = wy is of type (B, A, A), in the terminology of [17]. This coincides perfectly with the general
characterization of B, given there, with the proviso that relative to the notation there, I, | have been
switched around here, so our (B, A, A)-brane corresponds to their (A, B, A)-brane. Note that integra-
bility of I, ], K is trivial due to flatness of C2.

Note that this is compatible with the discussion in section 6.1.4. Our choice for B, meant choosing its
curvature db = wj = Re ), which indeed gives an A-brane in the complex structure | and symplectic
structure Im Q).

Finally, note that £ = {u; = i = 0} is Lagrangian with respect to Im Q) = Im (dz1 A dz,) =
A& A & + dE A dE3. Hence it would be most convenient to use this in A-model quantization.

Localization

We have shown that there is a valid A-twist so we can consider localization properties of this model.
Looking at the fermionic Q-fixed points

(5@7 = —06_84); — iﬁc+g;j8jW + fermions, 57t = —5c+54)i + ia_gijajfw + fermions.  (6.3.15)

we see by setting &1 = a_ that the model localizes on the flow equation of quantum mechanics with
non-trivial Hamiltonian, namely 54)i - igijajfw = 0. Note that the discrepancy between this formula and
(6.2.8), as we mentioned before, can be lifted by redefining the phase of W.

Since there actually are two separate supersymmetry parameters &, x_, one could argue that the model
actually localizes to é(pl = dW = 0, as advertised in [15]. However, as we discussed in section 3.4, the
boundary condition at 0¥ for A-type supersymmetry in the case that £ = C, becomes Ci + G5 =0.
Here the superscript s denotes the normal component of Gi normal to dZ. This boundary condition
implies that only the combination of supersymmetry parameters & = &4 + a_ is preserved at d%. There-
fore, the model can only localize on the entire flow equation (6.3.15).

The flow equation reads explicitly

= | = i = =1 = i
ouy —ig0-~ Uy = duy — =1ip = 0, dup — ig" 0=~y = duy — <17 = 0. 6.3.16
118705 7T 1 52 2 — 18705 T 2~ gl ( )
Now recall that after the exotic twist, on the worldsheet 17 was a section of K and 15 of C. Since 0 = %

should be interpreted as a (0,1)-form on X, it is a section of K. Therefore, §u1 is a section of C, while
duy is a section of K. It follows that the flow equation makes sense globally on X, as all terms sit in the
same bundle over X. Note that on our choice of £ = C, the cylinder, this equation is actually always
well-defined, since all bundles are trivial, so defined globally, on C.
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Imposing boundary conditions

Now we only need to specify the boundary condition A in (6.3.1). This is determined by the condition
that at s = —oo, the cylinder C is mapped into a middle-dimensional subset V of a critical subset of /.
For the SHO, it turns out that there is only 1 critical subset, in general, there could by multiple. The criti-
cal subset can conveniently be described as all periodic solutions of the complexified Hamilton equations
(6.2.6) on C2. Equivalently, one can look at the stationary points of (6.2.10) (where % = 0) to find the
same critical subset.

For the simple harmonic oscillator, a generic periodic solution corresponds just to a product of two circles,
each in a copy of C, spanned by the I-holomorphic coordinates 11 or uy. This choice is consistent with
the flow equation (6.2.10), that uses complex structure I. The set of all such circles is labeled by two radii
in Ry x Ry and forms the critical subset of . We can now choose V by flowing from either the set of
circles in the uj-plane or the us-plane. For instance, choosing the latter, these are solutions to

54 — 62 62 — 7@4
so V simply becomes the space V = {¢ | Vt € S': &(t) € L & (€2)*+ (¢*)* = E%,E € R} of cir-

cles that lie in the Lagrangian subspace £ = {u; = 0}.

This is a choice we have to manually enforce, as for path integrals involving open worldsheets one always
has to prescribe a suitable boundary condition A in the path integral. An insertion of a non-local operator
can only alter these boundary conditions.

{ur = 0}

Figure 8: Exotic integration cycle in the free loop space LM for the simple harmonic oscilla-
tor.

Within the above construction, we recall (6.3.1) that gives the partition function Zgpo of the harmonic
oscillator. Upon localization the only contribution comes from maps @ that have S4 1 = 0, obey the
flow equation (6.3.16) and the boundary condition

P(s = —oo,t) € V. (6.3.17)

The A-model path integral (6.3.1) thus reduces to the boundary path integral

Zsvo = nq>(A)/
CyCLM¢

D¢ exp (i 7% . (Budgpt — Hdt)) . (6.3.18)

Here Cy represents the exotic integration cycle: a collection of loops in M¢ obtained by downward
Morse flow from concentric circles in {u1 = 0}. Moreover, B, ¢! is the complex form of ApdE? and
ne(A) = 1 is the open Gromov-Witten invariant: the number of inequivalent embeddings of C that
satisfy (6.3.17), which is just 1. This follows from the simple-connectedness of M¢ = C2.
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Finally, recall that ordinary quantization of M for the SHO Hamiltonian gives the space of states sitting
in a representation of the oscillator algebra:

H = {|n> | En = (n+ %)h,n € Z>0} , (6.3.19)

where we restored 7. Its trace coincides with that of Hom(B, B..), with our earlier described choices
for the Lagrangian A-brane supp B, = {u; = 0} and B, with gauge field curvature wj. As a natural
generalization of the A-model quantization to H # 0, an interesting relation between the two spaces is
revealed: it seems most probable that these spaces should be isomorphic.
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CHERN-SIMONS THEORY

In chapter 3 we saw how we could twist field theories to make them topological. In this section we
discuss a second type of topological theory: theories with a manifestly metric-invariant Lagrangian. In
this fashion we obtain a classically manifestly topological theory of Schwarz-type. However, showing
that such a theory remains topological at the quantum level is usually non-trivial. The canonical example
is Chern-Simons theory, which is a topological gauge theory and central in the study of topological field
theory and knot theory.

For us, the most important property of Chern-Simons theory is that a full non-perturbative description
exists: the theory is fully solvable. We will show that Chern-Simons theory exactly computes polynomial
knot invariants, such as the Jones polynomial. We then finish with a discussion of the generalization of
the Jones polynomial by its categorification, Khovanov homology. Categorification here just means that
Khovanov homology assigns vector spaces, instead of numbers, to a knot. Khovanov homology will be
the motivation to pursue the duality in chapter 8.

7.1 Basics

Let G be a compact semisimple Lie group and suppose we have a principal G-bundle E — M on an
oriented closed 3-manifold M with gauge field A, which is an g-valued 1-form in Q' (M, ad E). Normally,
we could try to define a Yang-Mills type Lagrangian to describe the dynamics. However, in any odd
number of dimensions there is an alternative choice: the Chern-Simons action. In 3 dimensions, the
Chern-Simons action is given by

Scs(A) = % /Mtr <A NdA + §A/\A/\A) = ﬁ MCS(A) (7.1.1)

The level k > 0 plays the role of inverse coupling constant of the theory and tr is a suitably normalized
quadratic form on the Lie algebra g of G. Note that reversing the sign of k implies changing the orien-
tation on M. For the fundamental representation of G = SU(N), tr is just the ordinary matrix trace.
We shall discuss below how we determine the normalization of tr. If M is oriented and G is simply con-
nected and compact, every principal G-bundle on M is trivializable (always admits global sections). This
makes the above expression well-defined. However, if G is not simply connected, there can be non-trivial
principal G-bundles and we should sum over all possible bundles, see [18]. Note that the Lagrangian
CS(A) is manifestly metric-independent, as the integration of top differential forms does not require a
metric. Therefore, the theory is classically topological: the classical action is independent of the choice
of a metric on M.

The most natural way to understand the role of the Chern-Simons Lagrangian uses Stokes’ theorem: any
3-manifold M can be thought of as the boundary of some 4-manifold V. If it is possible to extend the
principal G-bundle E — M to a bundle E/ — V we can relate the Chern-Simons action on the former
with topological information on the latter. The easiest example is V = M x [0, 1], using the coordinate
t e [O, 1}. In this case, V retracts onto M, which makes the extension E/ — M unique.

By the Poincaré lemma we locally have tr (F A F) = dtr (CS(A)), leaving the wedges implicit:

3
tr (FAF) =tr ((dA + A2)2> = tr (dA2 +dAA% + A%dA + A4) = tr (dAZ + 2dAA2) .

dtr (AdA + 2A3) = tr (dA2 + % (dAA2 — A(dA)A + A%lA)) = tr (dA2 + 2dAA2) ,
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From this we can conclude that fM tr CS(A) = fV tr F A F, when an extension E' — V exists. If we
have two different connections A, A’ on the G-bundle E — M, then choosing the connection A at
t =0and A" at t = 1 in the bundle over M x [0, 1], by Stokes theorem we get

k
Scs(A) — Scs(A) = H/Mx[o AT, (7.1.2)

This relates two inequivalent connections to each other: their action differs by an integer multiple. This
correspondence can be generalized to any V over which we can globally extend our principal G-bundle,
there is a further analysis of these issues in [18]. So we see that the Chern-Simons theory on the bound-
ary M captures topological information of the associated 'bulk’ theory on V.

The partition function, also known as the Witten-Reshetihkin-Turaev invariant, for this theory is given
by the path integral:

Zes(M) = vO[l(G)/ADAexp (iScs(A)) = voll(G)/ADAexp <z’k/M CS(A)>
:vO[l(G)/ADAexp(:;T/Mtr<A/\dA+§A/\A/\A)>. (7.13)

Here we integrate over the space A of gauge connections on the principal G-bundle. Note that G acts
on the space of connections by gauge transformations A — gAg~! + dgg ™!, so we should integrate
over the conjugation classes in the space of connections. In perturbation theory this requires, in standard
practice, the introduction of Fadeev-Popov ghosts to fix the gauge, upon which the volume factor in front
is cancelled. Note that this is a formal expression for non-compact G, because then the volume of G is
infinite: this is circumvented by dividing any correlator by Z(M).

To be a consistent theory, the integrand in the path integral (7.1.3) should be single-valued. Under a gauge
transformation A — A’ = gAgil - dggil where g is an element of a simply connected compact
gauge group G, the Chern-Simons functional is shifted [,, CS(A) — [, CS(A) + 872, where we now

pick the normalization of the trace to ensure that the shift is exactly 8712, Indeed we have:
!/ / 2 ! !/ !
tr <A NdA +§A NA /\A>
_ 2 _ -1 1 -1 -1 -1
=tr AAdA+3A/\A/\A dtr (§ANd(g) tatr dgg  ANdgg  Adgg ), (7.1.4)

which is straightforward to check (D.1). Now the second term is a total derivative, so if M is closed, that
term will vanish upon integration over M by Stokes theorem. The third term does not vanish, even if M
is closed, and is a topological invariant of the gauge transformation g.

This follows from the fact that for a semisimple compact Lie group G, the third homotopy group is
isomorphic to the integers: 713(G) = Z, which reflects that there are large gauge transformations, i.e.
gauge transformations that are not smoothly homotopic to the identity transformation.* Hence any
gauge field or gauge transformation is classified by its winding number 1, computable from

1
2mn = —— [ t (d “Iadggt Ad *1) 2nZ. 7.1.5
m= 1= /M r\ags 88 88 €in (7.1.5)
Hence we see that the Chern-Simons functional transforms under large gauge transformations as

k G k
E/M cs(A) s E/M CS(A) + 27nk. (7.1.6)

*As an example, consider Chern-Simons theory with G = SU(2) on S%. A gauge transformation is generated by a local element
g(x) of the gauge group SU(2): gis a map ¢ : S — SU(2). Not all such maps are contractible to the identity map, because
SU(2) = S3: since m3(S%) = Z. Note that from this isomorphism it follows that 713(SU(2)) 2 713(S%). It is a nontrivial result
that 773(G) = Z for semisimple compact G.
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Since n is in general arbitrary, for single-valuedness of the integrand in the path integral (7.1.3) the level k
should be an integer. Note that this is a quantum constraint: the classical physics is entirely independent
of the choice of level k. Note that this result holds only for compact gauge groups G: for non-compact
G, the third homotopy class is not necessarily isomorphic to Z: as an example, for the non-compact Lie
group SL(2,R) we have 713(SL(2,R)) = 0. In that case, we do not have a topological obstruction on k.

The Euler-Lagrange equations for A follow from extremizing the action.

ko 2 k
(SSCS—(5(47_[./Mtr(A/\dA+3AAA/\A>)—ZM/Mtr((dA—I—A/\A)/\éA)—O (7.1.7)

from which we find (see (D.1)) the equation of motion
dA+ANA=F4=0. (7.1.8)

So classical solutions correspond to flat connections. Note that this equation is independent of the level
k, hence the classical physics independent of the level k. We also see that, in our earlier notation, if a flat
connection on M extends to a flat connection on V by our correspondence (??) we see immediately that
such a flat connection has Scg(A) = 0.

Flatness is preserved under gauge transformations since F - gFgfl (section 2). Hence there is a spe-
cial class of flat connections, namely the gauge orbit of the trivial connection A = 0 which consists of
pure gauge connections of the form —dgg~!. Note that on spaces with non-trivial topologies, in general
these are not all flat connections. This is because the flatness equation F = 0 is a local statement. In
particular, this means that on a infinitesimal loop, the holonomy of a flat connection is trivial, and more
generally one can show that its holonomy is trivial on any contractible loop: flatness is homotopically pre-
served.| However, on non-contractible loops, flat connections may have non-trivial holonomy. Since we
can concatenate loops, it’s clear that a flat connection is determined by its holonomies around non-trivial
loops, phrased more precisely: every gauge equivalence class of a flat connections is in exact correspon-
dence with a homomorphism v : 7711(M) — G. We denote the space of all such homomorphisms as
Hom(71 (M), G).

From the above considerations it follows that the appropriate phase space of classical solutions is the
space of gauge equivalence classes of flat connections, also called the moduli space of flat connections

MC ={AecA|Fy=0}/G=Hom(m(M),G)/G. (7.1.9)

where we quotient out by gauge transformations. M has a very intricate topology in general, which is
one of the reasons that explicit calculations in Chern-Simons are a-priori not straightforward.

Observables

In Chern-Simons theory, observables are furnished by Wilson loops which compute the holonomy of the
gauge field A around closed curves on M: they capture only global information of M. A Wilson loop W
is defined as the unique solution to the parallel transport equation: suppose we are given a path C from
Xo € M to x € M, then a basis element ¢;(x() of the fiber at x( is mapped to another basis element
e;i(x) = gi]ej(xo) of the fiber at x by an element g(x) € G. Any vector { = t;e; then satisfies the
equation for parallel transport at any x:

Dy =0 — Dg = dg+ Ag = 0. (7.1.10)

If the gauge group G is abelian, we can simply view this as the defining equation of the (matrix) expo-
nential and write the solution as g(x) = exp f;; A € G. Then we can make a scalar operator out of this
by taking a trace

trexp/;A. (7.1.11)

IThe proof of this follows easily by dividing the area enclosed by the contractible loop into a grid of infinitesimal loops: all
internal contributions will cancel, leaving only the edges giving non-zero contributions.
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This expression has a natural physical interpretation: if we imagine a particle that has unit electrical
charge under the U(1) symmetry of electromagnetism, then the Wilson loop amounts exactly to a con-
tribution to the action of g fC A, which is exactly the addition to the action due to a charged particle
traveling in the electromagnetic potential A.

However, when G is not abelian, there will be ordering ambiguities and we cannot simply exponentiate
to get a solution of equation (7.1.10). However, we may denote the unique solution to equation (7.1.10) as
the formal expression

Wc(A) = trPexp (/C A) (7.1.12)

where we denoted by Pexp the path ordered exponential. One should think of this as a ordering pre-
scription on the products of gauge fields that appear in the exponential, upon which ultimately physical
relevant quantities like correlation functions are not dependent in the end**.

Perturbative issues

Firstly, we saw that the Chern-Simons action was metric-independent, which makes the theory topolog-
ical classically. Now the calculation of correlators of Wilson loops can be done perturbatively: one can
show that the metric-independence continues to hold at the perturbative level, by showing that pertur-
bative quantum calculations give almost topological invariants, which are metric independent. They are
not truly ‘topological’ as one does need to choose a framing: a choice of local trivializations of TM and
the knots. This issue is covered in more detail in [19].

7.2 Canonical quantization of Chern-Simons theory

We now come to the magical property of Chern-Simons theory: it has a full non-perturbative solution.
The idea is to cut M in pieces and canonically quantize the theory on each piece. After quantization,
one can glue the pieces back together using the axiomatic rules of topological field theory to obtain all
correlation functions for Chern-Simons theory on M. These rules are elegantly captured by category
theory, which we discuss in appendix A.4.

Here, our spacetime M can be non-compact, but we will see that we can get the most direct answers
when M is compact. By an indirect argument, we can then extend our answers to the case of non-
compact M.

Given a 3-manifold M, we can always cut it along a Riemann surface X, around which M locally looks
like £ X IR when no Wilson loops are present on M. We can interpret IR as the time direction and X
as an initial value surface. If Wilson loops are present, £ will contain punctures. We shall first describe
canonical quantization on £ X IR without Wilson loops.

The principal G-bundle can be restricted to E — £ X R and for the gauge field A on this bundle we
identify the fields A; as canonical coordinates and their time derivatives d; A; as canonical momenta. The
Chern-Simons action in index notation is:

k

Scs(A) =

i 2
/Z“,x]R d?xdte* tr <Aia]'Ak + 3Al’A]‘Ak) (7.2.1)

where (x,t) € ¥ X R and € is the total antisymmetric tensor. On X X IR, we can decompose the exterior
derivative as d = dt% + d and the gauge field as A = Ag + A, upon which the Lagrangian becomes

_ Kk 2080 tr (A, A;) + 2 A4 A2
L— 4n/dt/2d yél te (AidiAj) +2n/let/Zd ytr (Ao (dA+ 42)) (7.22)

**This is also clear from considering a solution to the holonomy equation (7.1.10) as follows: for any parametrized path 7,

consider a small segment dy = '%M on which we do parallel transport using the connection A. Then we can obtain the holonomy

along the curve 7y as ¢ = limg_,o [exp (A ('Z—'Z(O))) exp (A (%(&))) exp (A <%(2(5t)>) . } which we cannot write as a
single exponential due to the non-abelianity of G. We rather summarize this expression as the formal path-ordering exponential
Pexp [ A.

v
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where &'/ is now the total antisymmetric tensor in the space directions. Note that Ay has no canoni-
cal momentum: there is no d:Ag term in the Lagrangian: it is not a dynamical field, instead Ag acts
as a Lagrange multiplier. It is a multiplier for a *’Gauss law’, since as seen above, Ay multiplies éijl:"ij,
the space part of the curvature of A. To identify the space of physical states we constrain first. So
we first restrict ourselves to flat connections and take into account gauge equivalence: gauge equiva-
lent connections have the same action as shown before. Hence the phase space of Chern-Simons theory
on X X R is exactly the moduli space of flat connections Mg on the restricted bundle E' — X. It
turns out that this space is compact [19] and hence we deduce that the space of physical Chern-Simons
states will be finite-dimensional: its dimension is most easily seen from considering Hom(7ty (M), G):
dim(7ry(M)) = 2¢ — 2 since 711 (M) has 2g generators and obeys 1 relation [Taba~'b~! = 1 and we
need to mod out by conjugacy, so from plain linear algebra we get dim Mgg = (2¢—2)dimG.

Studying this constraint is the key to the non-perturbative description of Chern-Simons theory.

The relation to the Wess-Zumino-Witten CFT

The classical constraint was that we should restrict ourselves to flat connections, for which €F = 0. With
r marked points (sources) on L, this relation is modified to

k _; !
= Fifa _
F 12 15 x pl (7.2.3)

Suppose now that we first quantized and afterwards imposed the flatness constraint: in that case we
would have an operator constraint on wavefunctions: choosing Az as our canonical coordinate, any
physical Chern-Simons wavefunction ¥ cs[Az] should obey:

k

yp Pa Tcg Z 1) 2> x - PZ)T Ycs [A ] (7.2.4)
i=1
In terms of the operators Az and 2 {52 , the curvature operator reads
F, = 0zA; — 0: Az + [Az, Az] = 8A7+2 D*é (7.2.5)
zz — Oz Zr z41z k (5A* Lo

where we used the gauge covariant derivative D7 = 0z + [Az, .].
Without knots

Suppose there are no knot insertions on M, then the flatness constraint reduces to

. 0 21 51"
F,¥cs[Az] = k 3*@ d;Az - AEITAE Yes[Az]

k )
which is equivalent to
é k
605 + f AL (2) ) ———¥cs[Az] = —0.A%(2)¥cs[As]. (7.2.7)
( z z )Mg(z) Hoop :

The Chern-Simons Hilbert space H g corresponds to normalizable solutions to these equations. We want
to prove the identification:

Hes(Z x R) 2 {conformal blocks of WZW theory on £} .

To show this, the idea is to couple the WZW currents | to a background gauge field A, upon which we
can write down a wavefunction

Py zw[Az] = (exp (— / AZJ) (7.2.8)
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By calculation, one shows that the flatness constraint (7.2.7) with ¥z [Az] is equivalent to the J]
operator product expansion

k(sab
(z—w

J (w)

z—w)

1% (2) ] (w) = 7 + fob ( +.... (7.2.9)
Since the J] OPE is equivalent to the WZW Ward identities, which uniquely characterize the conformal
blocks of WZW theory, one has the wanted identification. The relevant calculation can be found in

appendix (D.2).

With knots

This identification continues to hold when we have Wilson loops on M: now we have to do quantization
on X — {p;},, where the p; represent punctures where the Wilson lines cross X.. Flat connections will
now be classified by their holonomy around these punctures, that is, the flatness constraint becomes

k n
EFZ”Z =Y 6(z—p)T}. (7.2.10)
i=1

Here the T(”i) are the generators associated to the representation R; at p;, a is a group index. Now quan-

tization of this equation is not straightforward: the connection that satisfies this constraint cannot be
quantized to a scalar operator, since the generators T(Hi) are not commuting for non-abelian gauge groups.

We can circumvent the problematic operators T?, by employing the Borel-Weil-Bott theorem. This result
enables us to exchange the quantum problem for a classical one. This works as follows. One introduces
the flag manifold G/ T where T is the maximal torus in G and for every representation R; we introduce
a symplectic structure wg, on G/T. This symplectic structure is such that quantization of the classical
phase space (G/T, wg,) gives back R;. This allows us to replace the operators TE’Z.) on the right-hand side

by functions on G/T that would quantize to the T(”l.). It turns out that this function is exactly a moment
map U.

Intuitively, it should be clear what the punctures on X correspond to: marked points should correspond
to primary operator insertions on X, which transform in some representation R; of the gauge group G.
Then the space of physical states Hy, ;. r; will correspond to the space of conformal blocks associated
with the correlation functions of those primary operators. One can show that indeed the generalized
flatness constraint (7.2.10) is equivalent to the Knizhnik-Zamolodchikov equations

1 Ti®T!

- Wz zn). (7.2.11)

azjtp(z1,...,zn) o
a,p#q P

These equations uniquely determine the WZW conformal blocks: they are defining differential equations
for correlation functions of Virasoro primary fields. This correspondence is worked out for Chern-Simons
on S3 in [20]. In this way we again conclude that Chern-Simons physical states correspond to WZW
conformal blocks.

At this point, the nature of the representation of the operator insertion at the marked point comes into
play: if the representation is complex, then the knot should be oriented since complex conjugation in-
terchanges inequivalent complex representations. If the representation is real, then complex conjugation
does nothing and the knot can be unoriented. This indicates already that for G with real representations,
any relation we can write down is less constrained than in the real case.

7.3 Chern-Simons theory and knot polynomials

Using the identification above, we can now compute Chern-Simons correlation functions using the WZW
CFT. First, we consider closed M. Then it is a fact from topology that any such manifold can be obtained
from S by surgery. Surgery leads to recursion rules, which allow us to express the correlation function
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for any link on any closed M in terms of a correlator on S3 with extra links included. It turns out that
we only need to consider the surgery operations in the case of genus 0 and 1, since any surgery can be
obtained from the genus 1 case, the genus 0 fixes the overall normalization. The intuition for this is that
the genus 1 surgery allows us to remove holes, which can be iterated as needed. Effectively, this means
that we only need to describe the canonical quantization of Chern-Simons theory on £ x R where X is
of genus 0 or 1.

o In genus 0 without punctures, the physical Hilbert space is the 1-dimensional space of conformal
blocks of WZW theory with gauge group G at level k. With punctures, we already derived a
selection rule for allowable representations of the primary operator insertions. This enables us to
describe knots on S3.

e Canonical quantization associates to the torus ¥ = T? the Hilbert space H.(T?) of WZW confor-
mal blocks on T2, which are in one to one correspondence with the integrable representation of the
affine Lie algebra associated to G at level k.

The canonical reference for all CFT related material is [21].

At genus 0

Suppose 2 has genus 0. Since the theory has to be gauge-invariant, if punctures are present on X the
representations and charges associated with the punctures should always be such that all charges sum
to zero, since at weak coupling (large k) all charges are ’static’ and are decoupled from the gauge field.
For finite k the physical Hilbert space will be a subspace of the G-invariant subspace H = Inv(®;R;).
Hence, we can list the possibilities for a low number of punctures r and for the case where R is a complex
fundamental representation of G:

e v = 0: H has dimension 1. This corresponds to the fact that in a CFT, for descendants of the
identity there is only one conformal block.

e r=1:dimH,r = 1if R = 1, the trivial representation and dim H = 0 otherwise.
o r=2:dimHy, p, R, R, =1if Ry = R», and is 0 otherwise.

e v = 3: In this case dim HpirpjrpkrRier/Rk = Nijks where Nijk are the coefficients in the Verlinde

usion algebra, ¢; X ¢; = Nk , where the labels label highest weight representations. We shall
not really use this here.

e r > 3. If we know the coefficients Njj, we can deduce the dimensions of  for all higher number
of punctures. From the fusion algebra, one can recursively express all cases in terms of Njj. One
special case will be especially important to us: r = 4 and representations R, R, R, R, for which we
have

S
ReR=QE (7.3.1)
i=1

with E; distinct irreducible representations of the gauge group G. R ® R ® R ® R is uniquely fixed
by the decomposition of R ® R, by complex conjugation. So dimH = s, at large k (the weak
coupling limit). As an example, for SU(3), we have 3 ® 3 = 3 @ 6, the decomposition into the
antisymmetric 3 and the symmetric 6. In general, s = 2 for SU(N), so dim HPLPLP&P@R,R,RF =2,
and only for k = 1 it is 1-dimensional.

If the representation R is real, then the most important modification for us comes about in the case
for four punctures. For concreteness, let us take G = SO(N). Then any tensor product of two real
fundamental representations can be decomposed as

RRIR=SBA®1 (7.3.2)

where S is the symmetric representation, A is the antisymmetric representation and 1 is the trivial one.
We see that s = 3 in for SO(N).
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Cutting and pasting on M uses the discussion from section A.4. Chern-Simons theory assigns to a closed
manifold the partition function Z(M). Moreover, it assigns to a manifold with boundary % a Hilbert
space H (%), which depends on a choice of orientation of X: once this is picked, the topological field
theory should assign the dual space H* to X with the opposite orientation, which we denote by —2..

We first restrict to compact M. Slicing M along a Riemann surface & = S? of genus 0 splits M =
M_ U Mj. We take the convention such that M_ is bounded by —2. with the negative orientation and
My by X with the positive orientation. Then our topological field theory assigns a vector x € H* to M
and a vector ' € H to M_, for which we have

(xx') = Z(M). (7.3.3)

Note that by our discussion in the previous section,  and H* are both 1-dimensional. Now consider
$?=5u Si, sliced through the equator S?. Then the same reasoning gives us a vector v/ € Hg2 and
a vector v € H, such that (v,0') = Z(S3), where again the Hilbert spaces are 1-dimensional. But the
Hilbert spaces H and Hg2 should be the same, so v is a multiple of x and v’ is a multiple of x’. Hence

(6 X)(0,0) = (0, V') (0, x') = Z(M)Z(S®) = Z(M1)Z(M,) (7.3.4)
where M| = M_ U Si and M = MU S3. Normalizing this equation, we learn that

Z(M) _ Z(My) Z(M,)
2@~ 2 2&) (733)

Now consider the special case that we have N unlinked circles or unknots on S3. Then we can repeatedly
cut S3 in such a way that we do not intersect the unknots, so that repeated use of the above procedure
tells us that

3. N 3 .
Z(S ,Cl,.3..,CN) _ H Z(S I3Cl)~ (7.3.6)
Z(8%) i1 Z(S%)
For later use, we define the correlation function
3.
(Cy,...,CN) = 2(5%C,. ., Cn) (7.3.7)

Z(5%)

Note that up to now, we didn’t need the explicit value of the 3-manifold invariant Z(S%). We will give
an explicit expression for Z(S3) in section ??.

At genus 1

Consider two manifolds M_, My with at least one common boundary X, which we take to have opposite
orientations on M. For definiteness, we assume that the orientation is such that My is assigned H(X)
and M_ is assigned H*(X). The TFT path integral on M1 computes states in these Hilbert spaces

(Ym | € H'(Z), Y, € H(Z). (7.3.8)

As before, we can glue M_, Mj along X using a diffeomorphism f : X — X which is represented by a
(unitary) operator U(f) that acts on the Hilbert space, U(f) : H(X) — H(c), so the partition of M is

Z(M) = (Yn_[U(f)[¥ my)- (7.3.9)

In the case that ¥ = T? there are special diffeomorphisms: namely those generated by the modular
group SL(2,Z) that acts on T?. This follows from a result on the mapping class group of T?: we have
Diff/ Diffy(T?) = SL(2,Z): all ’large’ diffeomorphisms, the ones that cannot be obtained by exponen-
tiation of infinitesimal diffeomorphisms, are exactly generated by SL(2,Z). This also implies that any
diffeomorphism on T2 can be obtained by a combination of a *small’ diffeomorphism from Diffy(T?) and
large’ diffeomorphism from SL(2,Z). In a basis where the two cycles of T? are the meridian m = (1,0)
and the longitude I = (0,1) (going the ‘long’ way around the torus), the generators S and T of SL(2,Z)

are represented by the matrices
11 0 -1
(D, =), -
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Figure 9: The torus T2 with the basis [, m of 1-cycles.

The generator T generates the Dehn twist, whereas S exchanges the m and [ cycle. These generators
then can be lifted to operators on H(X) as

TRR’ = TPP’ = 5ppl exp 2711 (I’lp — C/24), (7311)
j18+] Vol A®\ 2 27t
- , = _t ° A w(y
SRR = Spp CFAEE <V01AV ) wezwe(w) exp ( P w(p )) . (7.3.12)

Here A”, A" are the weight and root lattices of g, Vol A’ is the volume of a unit cell of the lattice, |A |
is the number of positive roots and p = % Y_);>0Ai is the Weyl vector: it is half the sum of positive roots.
For all the details on these notions, see [21]. In the first line,
2 _ 2
PR et 10
p

= e = T hy (7.3.13)

is the conformal weight of the primary field associated to the highest weight state |p).* In the second
line, the sum runs over elements w in the Weyl group W, the subgroup of isometries generated by
reflections in hyperplanes orthogonal to the roots of G. For example, one finds that this specializes for
G = SU(N)t to

(m—l—l)(n—i—l)rc) (7.3.15)

Smn = k+Nsm( k+N

Computing the Jones polynomial

Now suppose we have links in S3. For concreteness, we shall take G = SU(N) and all punctures in
the fundamental representation F from now on. We can split S3 with a knot K within as follows: we
can isolate a crossing in a knot projection, and draw a sphere S? around that crossing. This divides S>
into two parts Moyt and M, separated by an S? with four punctures {pi}ti=1,. 4. Giving the knot K an
orientation, two punctures will correspond to some fundamental representation F and the other two to
the dual F. By the axioms of topological field theory, we will get two vectors: x associated to Moy and
P associated to M, from which we get

3
Z(8%,K) = (1 4. (7.3.16)
*We recall that for a representation R the quadratic Casimir number ¢;(R) is defined as
_, dimG ab g sab
Cz(R) =dg dmR’ trt't’ =d,.0". (7.3.14)

This result follows by Schur’s lemma: any object in the Lie algebra g that commutes with all the generators, is necessarily pro-
portional to the identity I. We consider the operator t4t%. We have [t7, tPtP] = ifabetetb 4 gbjfabege — jfabe f4b 4} — 0 since
fobe = — fab Therefore tit& = ca(R)id and so tr t4t% = c2(R) dim R. But we also have tr #°t* = d,6" = d, dim G. Comparing
the two expressions gives the quoted result.

VoI AT
fact that su(2) has only 2 roots lying in a unit cell of the weight lattice and that the dual Coxeter number of SU(N) equals N.

1
* For the case of su(2)g, we have the datar = 1, |A4| = 1, (V"“‘w) ® = V/2,h = 2. The last two equations follow from the
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The Hilbert space H4 associated to S2uU {p1, P2, P3, pa} with representations F, F, F,F was 2. We now
replace My by My or M_, in which the punctures are connected by oriented lines such that locally they
look like Lo, L+ (see below). These will be assigned vectors g, )— € H4 by the topological field theory.
But since we now have three vectors ¢, g, — € Ha, they must be linearly dependent, i.e. there are
some constants ¢, ¢g, c— such that

cyPpy +coPpo+ce_yp_ =0 (7.3.17)
from which we infer, dropping the label S3 from Z(S3,.),

(0 +) +eolx o) +e- (X, 9-) =0 = 4 Z(My) + coZ(Mo) +c-Z(M-) =0.  (7.3.18)

ﬂjr + M 0 :'nf —

This equation can be massaged into the standard skein relation for the HOMFLY polynomial. The skein
relation allows one to compute the HOMFLY polynomial recursively in the number of crossings. Note
that this relation tells us that for the case of 2 unlinked unknots C, we have

ct+ t+c—

e+Z(C) + c0Z(C?) +¢-2(C) = 0= (C) = ==

(7.3.19)

One can determine the coefficients ¢+, ¢g, c— by translating the crossing diagrams for M, My, M into

braid operations in Hy4. After taking framing issues into account, one finds, after setting g = exp 1\2]7_?,(,

that the skein relation can be written as

—qTZ(My) + (g2 —q 2)Z(Mo) + 92 Z(M_) =0. (7.3.20)

The details of this calculation can be found in [19]. We can check that our values found for ¢4, cg, c—
correctly give for the unknot C *

=4

(7.3.22)

M=oz

=51
92 =4

ST

In knot theory, it is conventional to normalize (C) = 1. For G = SU(2), the knot invariant obtained in
this way is called the Jones polynomial J(q). It is a Laurent polynomial in g and has integer coefficients.
We will come back to this in section 8. For G = SU(N), the knot invariant is called the HOMFLY
polynomial, while for G = SO(N), it is called the Kauffman polynomial.}

*One check of this formula: in the weak coupling limit k — 00,4 — 1, the correlation function should go to its value for
A = 0, since the fluctuations in the connection shouldn’t matter any more at weak coupling. But that value is just the dimension
of the representation since in this case

(C) = (trr PeXP/A> =(trr1) =N (7.3.21)

This answer is easily checked by employing I’Hopital’s rule to equation (7.3.22).

#The most important difference with the case G = SU(N) is that the Hilbert space # associated to the sphere with four
punctures is 3-dimensional, instead of 2. This means that we need a linear relation between 4 different vectors in H: ap; + b, +
cp3 + dpg = 0. These vectors are conveniently associated with the skein relation that defines the Kauffman polynomial.
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Knot | J(9)

Trefoil —*+3+q

Figure-eight 7>+ qlz —q— % +1

Solomon’s seal or Cinquefoil | —g” +¢° — ¢° + g* + ¢?
Stevedore ‘74_‘73““72“‘%2—24—%4-2

Table 4: The Jones polynomial J(g) for some knots of low degree.

GO

Figure 10: The trefoil knot, the figure-eight knot, Solomon’s seal and the Stevedore knot.

Links on compact manifolds

For general compact manifolds, the following mathematical result without proof is key: any compact 3-
manifold can be obtained from S3 by a sequence of cutting and pasting. If we have a knot K in a general
manifold M we can repeatedly excise a solid torus Ts from M, perform some diffeomorphism F on its
boundary and glue it back into M — T, and obtain M = (M — T) Uk Ts, so that at some point, we
will arrive at S3. Suppose we perform one such operation and have a Wilson loop on a knot K in some
representation R;. A diffeomorphism F acting on 9Ts = T2 will lift to a CFT operator that acts on the
representations R;, so that the partition function transforms as

Z(M;R;) = Y. F/Z(M,R)). (7.3.23)
j

Note that this procedure is not unique: there are many ways to get from any closed M to S°.

Links on non-compact manifolds

In the case of non-compact M, these techniques work analogously. Taking the special example of M =
IR3, we can compactify it by adding a point at infinity, which gives us S> = R® U {co}. In doing field
theory on R3, it is physical that one should consider only the connections that are trivial at infinity:
Al = 0 and to gauge transformation that are 1 there. Hence, when we would use Chern-Simons theory
to compute correlation functions on IR3, we expect that it would give the same as Chern-Simons theory
on S3 with the constraint that we should only consider connections that are 0 at some specified point,
the compactification point co € S3. But in doing Chern-Simons theory on S3, the only connections that
we consider are the (gauge equivalence classes of) flat connections, of which there is only 1 since the
fundamental group 711(S%) = 0 is trivial, like on IR3. Hence we infer that Chern-Simons theory on R>
should compute the exact same correlation functions or knots polynomial as Chern-Simons theory on S3.
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THE EXOTIC BULK-BOUNDARY DUALITY

In this chapter we show that Chern-Simons theory is dual to twisted SYM, by generalizing and apply-
ing the techniques developed before. It is entertaining to see that in this way a Schwarz-type and a
Witten-type topological theory are related. We explain what the geometric setting of the duality is: one
can realize the duality between the two gauge theories in string theory. Using non-perturbative string
dualities then allows us to describe a proposition for a gauge theory description of Khovanov homology.

8.1 Flow equations and critical orbits in Chern-Simons theory

In this section, we shall assume that the SYM 60-angle is 0. Recall that the physical fields in Chern-Simons
theory are the gauge fields A, that are connections on a G-bundle E —> M, where G is a compact Lie
group and M is a 3-manifold. Our first goal is to find an alternative expression for the path integral (7.1.3)
(the WRT-invariant) and knot correlators. We shall first analyze the situation in the case that there are
no knots inserted on M:

. .k 2
Zes(M) = /M DAexp (iScs(A)) = /M DAexp (1471 /M tr (A NAA+ZANAN A)) (8.1.1)
where we made explicit that we integrate over the phase space
Cr = M = {Gauge fields Aon E — M},

which is infinite-dimensional. We call this normal integration cycle Cr. Note that adding Wilson loops
does not affect the convergence of the path integral on the exotic cycle defined by (8.1.7) since a Wilson
loop is linear in the gauge field A in the exponent. Hence, we will not include them for now; we will come
back to them later. According to the recipe developed in the previous chapters, our first step is now to
complexify everything. So we consider a G¢-bundle, the complexification Ec — M, on which we have
the phase space

M = {Gauge fields A = A +ip on Ec = M},
where ¢ is an ad(E)-valued 1-form. The curvature of A is F = d. A + A A A and the complexified action
is

Scs =re” ™ /M dx (.AA dA + %A ANAN A) . (8.1.2)

Since G¢ is complex, the level k does not have to be an integer anymore in general, so we can write

% = re~®_ To write down flow equations, we need a choice of metric g on M: a Kahler metric on M¢

is given by
ds? = — /M tr (SAN *p0A), (8.1.3)
where A = A — i¢ denotes the complex conjugate connection. Its Kahler form is
w= /M tr (66 A #pOA) . (8.1.4)

An infinitesimal G gauge transformation is A — A+ dA = A+ d A with A a g-valued function.

*A finite G gauge transformation maps A — gAg_1 + dgg_l. Expanding around the identity, we write g = 1 +€eA +.... It
follows that infinitesimally A — A+ €[A, A] + O(€?) = A +d 44, since G only acts on the real part of A.
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Hence, the vector field that generates a real complex transformation is X = dA/\(SAA. It follows from a
suitable generalization [26] of the formula dyg = 1xw that the moment map for G gauge transformations
is defined by

/M tr (SUcA) = iz = — /M tr (dgd A %p10) = /M tr (8(da %a1 @)A) (8.1.5)

where we used that § and d 4 commute and that A as a g-valued function can be freely moved around in
the last equation. It follows that the moment map for the G-action is the 3-form pg = d 4 *p ¢.

So we want to take the real part of (8.1.2) as a Morse function h = Re Scg and look for its critical
subsets. These subsets correspond to G¢-orbits: gauge equivalence classes of flat G¢-connections for
which F = 0. We already saw that the interesting critical orbits were the semistable ones: for a flat
Gc-connection A to be gauge equivalent to a connection for which g = 0, means that the holonomy of
A around 1-cycles on M is not strictly triangular [27].

In terms of the complex gauge fields A, A, using the metric (8.1.3) the flow equation now becomes

dA . 3Scs ) =

— = —exp (—in) xp —= = —exp (—in) *p F. 8.1.7
s p(—in) *m —— p (—ia) *m (8.1.7)
We can think of the functional derivative as the coefficient that multiplies A0.A in varying Scg with
respect to A. Note that we can always rescale s so that the level ik has norm 1, so we can set ¥ = 1 in
(8.1.2). It is now straightforward algebra to show that these equations are equivalent to

(F=¢pAp)" =tdap)™, (F—¢pnp)” =—tdap)™, (8.1.8)

where d4 = d + [A, ] is the gauge-covariant derivative, = denote the self-dual and anti-self-dual pro-
jections and we defined the constants

_1—cosa 1 1+ cosa

t : , :
sinw sinw

(8.1.9)
The precise calculation can be found in appendix D.3.

Having obtained the flow equations, we would now like to find an exotic integration cycle for Chern-
Simons theory as before by studying downward flow from critical orbits of i = Re Scs. The procedure
for this would be entirely analogous to the one outlined in chapter 6, however the phase space M is
infinite-dimensional. So at this point we again need to apply the Morse theory techniques in the infinite-
dimensional case, do Floer theory. Recall from chapter 6 that the reason that we can apply Floer theory
is that the flow equations should be elliptic differential equations. (8.1.7) is elliptic, since it involves the
differential operator %(1 +x)d 4 = d;, whose symbol is simply a linear function p, that vanishes at the
origin.

The space of physical states needed in that procedure is given by the equivariant cohomology of M,
where the group action now is given by local gauge transformations. Every stable critical orbit contributes
a state to the equivariant cohomology H( (M ): similar observations from in 6 hold analogously.

*The metric (8.1.3) is G-invariant, but not G¢-invariant: under a gauge transformation
Av— gAg ™t +dgg7t, A gAg +dgg L. (8.1.6)
the metric picks up a term [, tr (géjg’l A *MgzsAg’l); since gg1 # 1, it is clear that in general the metric is not invariant

under a complex gauge transformation. However, under a real gauge transformation, the metric is invariant, since in that case
g = g. We can spell this out more clearly in the abelian case: under A —— A + dA the metric then transforms as

- /Mtr (6A N %10 A) — /Mtr(éd/\/\*MzSA-i-éA/\*M&dA)+O((§A)2) - /Mtr(éd/\/\*M(SA—*MzSdA/\(SA),

=0

where the minus sign comes in since we regard dA and ddA as 1-forms. Therefore, we have at most a moment map G gauge
transformations.
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Exotic integration cycle

Semistability requires that the moment map for real G-gauge transformations vanishes on the critical
orbit, so we find that in general the equations for a semistable critical orbit are

kF
5=
It is now straightforward to use the techniques from chapter 5 to find an exotic integration cycle for
Chern-Simons theory. The original integration cycle was the space CRr of all real gauge fields: A =

A, ¢ = 0. This cycle is expressed in terms of Lefschetz thimbles C,, associated to the critical orbits Oy,
as

0, dA *M¢:O (8.].10)

Cr =) _nsCo,- (8.1.11)
[

Since h is the real part of a complexification, it is a perfect Morse function, so there will be no inter-
polating flows between critical orbits. From this decomposition, we find the exotic integration cycle.
In general, it is hard to find the coefficients n,. However, for manifolds M for which 711 (M) is trivial,
there is only one critical orbit: A = ¢ = 0, up to gauge transformations. As explained above (4.2.14),
Mpure gauge = 1: We see that the exotic cycle is equivalent to the original one, consisting of all real gauge
fields. Gauge transformations act freely on pure gauge connections, therefore no subtle issues arise from
G-fixed points. So CRr = Cpure sauge> Where equality again is at the level of path integrals.

8.2 Twisted ' =4 SYM

Now the main feature of the path integral duality is that solutions to the Morse flow equations corre-
spond to the class of maps that the dual topological theory localized on. Here we proceed to construct
the TFT that localizes on the flow equations (8.1.8) for Chern-Simons theory on M. We shall also now
allow 6 to be non-zero. From chapter 5, we heuristically know what the dual theory should be: the
open 1-dimensional gauged o-model whose target space is the space of complexified connections Mg
on Ec — M. The gauged symmetry is just the space of gauge transformations on M. lts superpo-
tential should be the Chern-Simons action, which gives the right Morse function. Upon localization we
get a residual boundary integration, which is exactly the Chern-Simons path integral over a middle-
dimensional exotic integration cycle in the space of complex connections.

It turns out that this c-model can be obtained from twisted A’ = 4 SYM on Z = R_ x M whose 6-
angle vanishes. When 6 # 0, a slight modification is needed in the boundary conditions on dZ. We now
proceed to show that the flow equations for Chern-Simons theory are exactly the localization equations
for twisted 4d N' = 4 SYM. The reference for this material is [17].

We start out by compactifying N' = 4 SYM on R_ x M. If M is curved, we need to accompany this
by a supersymmetric twist to preserve some supersymmetry. The 4-dimensional supersymmetries trans-
form under Spin(4) x Spin(6) = SL(2) x SL(2) x Spin(6) as (2,1,4) & (1,2,4) (see [17]). As always,
we need to twist using the R-symmetry of the theory. The R-symmetry group of 4d N’ = 4 SYM is
SU(4) = SO(6). Considering first N' = 4 SYM on flat R%, the Lorentz group is SO(4), while the sym-
metry group of N' = 4 SYM is the larger Spin(4) x Spin(6)g, where we have taken the double cover of
SO(6), as the fermions sit in Spin-representations. So twisting means that we need to choose a diagonal
embedding Spin(4) x Spin(4) C Spin(4) x Spin(6)g such that we again get Lorentz scalar fermions.
This situation differs qualitatively from the A-model in that we now have 3 inequivalent choices of diag-
onal embeddings, whereas with the A-model we only had one (up to signs).

It turns out that the appropriate twist for our setup is the geometric Langlands twist, which is described
n [17]. To define the twist, we need to specify a homomorphism 4 : Spin(4) — Spin(6)g = SU(4)r,
upon which the new Lorentz group is given by Spin(4)" = (1 x h)Spin(4). The idea is to choose  such
that we embed Spin(4) = SU(2); x SU(2);, as

su(2 0
( é)z SU(Z)r)’ (8.2.1)
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which commutes with a U(1) group whose generator is

(1 0
le(o _1>. (8.2.2)

This residual U(1) can be interpreted as the residual Spin(2) R-symmetry. Using this embedding the 4
of Spin(6) transforms under Spin(4)’ x U(1) as (2,1)! @ (1,2) ! and the 4 as (2,1) ! @ (1,2)'. It follows
that the 4-dimensional supersymmetries transform under the new Spin(4)’ as

(213 — 21 2 (0 "e0,2)) — 0N e ) e @22) (8.2.3)
(1,2,4) — (1,2)°® ((2,1)1 @ (1,2)*1) — L) Te1,3) e 22l (8.2.4)

We see in this decomposition that both representations contain a factor of (1,1), hence there are two
generators € (coming from (2,1,4)) and €, that are invariant under Spin(4)’. Using chirality relations and
properties of 10-dimensional I'-matrices, it turns out that we can pick any complex linear combination
€ = u€; + ver and declare this to be the topological supersymmetry parameters; since a rescaling of €
is irrelevant, we see that the topological symmetry is parametrized by t = 7 € CP!. The associated
supersymmetry generator is Q = uQ; + vQ;, and it is convenient to write § = €, {Q;,.} + & {Q;,.}.
For the fermionic fields one then finds the supersymmetry variations (we drop the indices for clarity)

T =u(F=pAp)" +0v(dap)", o =vdyp+ulo,ol, 0 = udso+vlp, 0],
ox  =v(F—¢pN¢p) —u(da¢p), 0 = —udiyp+vlo, o], 8 = vd o —u (e, o).

Heredp = d+[A, ], d}\¢ = xda x ¢ = dp ¢! and 0 = % (¢4 — igs). Note that x is a 2-form, 77 a
0-form and ¥ a 1-form.

From this we see what we claimed in the previous paragraph: the Q-fixed points of Y= are equivalent to
the flow equations (D.3.4) of Chern-Simons theory! Since Q is nilpotent, it follows from the discussion in
chapter 3 that the path integral of the twisted SYM theory can be localized on field configurations that
obey 0@ = 0. This immediately shows that the philosophy outlined in chapter 6 holds: the exotic dual
theory localizes on solutions to the flow equation of the theory one starts out with. For convenience we
define

UT = (F—pAp+tdap)”, u—:(F—¢A<p—t—1dA¢>f, Ul = d o, (8.2.5)

so the theory localizes on U™ = U~ = U® = 0. It is found in [17] that the topological SYM action can
be constructed by brute force as

SSm =1{Q Z} + ik / tr (Fow A Fu) (8.2.6)
JR_XM

where F, is the curvature of the complex connection Ay, = A+ w¢, w € C and the canonical parameter
k is defined as

1t—t71 6
ottt 87
The canonical parameter is related to the Yang-Mills coupling constant (2.1.7), given by T = % + % as
T+T | T—T (t—t1
k = . 8.2.8
2 T2 (t + t1> (8:28)

This action contains by construction the term

1
- {Q, / tr (x* Ut +x U+ Xouo)} c st (8.2.9)
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which ensures that the theory localizes as € — 0 on the field configurations for which the equations in
(8.2.5) vanish. Here, the xs are Q-exact fermions and we dropped indices for clarity. The lengthy details
can be found in [17, 29].

Using Stokes theorem and our calculations in chapter 7 we have f]lL o (Fo NFu) = fM CS(Ay). We
therefore find that we can write the twisted action as

U . _ to .
8.3 Branes and boundary conditions

To motivate the procedure of the final parts of this chapter, we will first describe how to embed the
"Chern-Simons+SYM’-system for G = U(N) into type IIB superstring theory, using a NS5-D3 brane
system. For some background on these objects, see appendix ?? and the text [2].

So we put type IIB superstring theory on R? x T*Z’, where Z' is a 4-manifold. We assume that T*Z’
is Calabi-Yau. Inside this space we have R_ x Z' C R? x T*Z', where Z’ is embedded as the zero
section. We then wrap N D3-branes on Z’ x {0}, which is described by N = 4 SYM, suitably twisted
to preserve supersymmetry on Z. We make a choice of 3-manifold M such that T*M C T*Z'is a
complex submanifold. M might or might not divide Z" in two pieces, such that M = 9Z for some Z.
The special choice in the previous section was Z = IR_ x M. Since the 6-manifold T*M is a Lagrangian
submanifold, we can wrap an NS5-brane (see appendix ??) on T*M, on which the D3’s end. This last
condition is sufficient for the NS5 brane to preserve maximal supersymmetry, as shown by a non-trivial
calculation in [30].

NSS \/\ ] ;‘l f:; .T-.e:Zl

—
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Figure 11: Geometry of the NS5-D3 brane system.

Supersymmetric boundary conditions when 0 # 0

We described the brane system that is the string picture of the duality between Chern-Simons and N' = 4
SYM. Here, the D3-branes were supported on Z. For our purposes, we need to allow for a non-zero 0-
angle. So what is the %—BPS boundary condition on the SYM bosons and fermions at dZ when 6 # 0,
such that maximal supersymmetry* is preserved at dZ? We shall see that the appropriate boundary
partially fixes the behavior of the fields at 9Z.

We recall from equation (2.2.6) that in ' = 4 SYM, using Noether’s theorem, the supercurrent associated
to supersymmetry is

Jh= %tr (FIKP,KFIA) , (8.3.1)

*Note that on general grounds these should be % BPS boundary conditions: the boundary breaks one translational symmetry,
such that half of the supersymmetry is broken.
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where A was a 10-dimensional Weyl spinor and I = 0,...9. We recall that dimensional reduction

SO(1,9) — SO(1,3) x SO(6)R gives us
a gauge field A;,i =0,...,3, 6scalars Az, = ¢g,0 =1,2,3; Ao = Cm,m =1,2,3  (8.3.2)

and four Weyl spinors; A transforms as (2,1,4) & (1,2,4) under the broken gauge group. Furthermore, it
will be useful to note that we can decompose the 16 spinor of SO(1,9) as Zg ® Z,, where Zg transforms
as (2,2,2) of SO(1,2) x SO(3)p x SO(3); and Z; is a 2-dimensional vector space. A boundary preserves
supersymmetry iff it ensures that the component of the supercurrent normal to the boundary vanishes.
Given a supersymmetry generator €, the condition for the special choice R_ x M for the uncompactified
space is

tr (EFU FUFS/\> -0, (8.3.3)

where the subscript s stands for the coordinate along IR_, whose boundary is at s = 0. In general, this
equation can only be satisfied at the boundary dZ for vectors € € Zg ® Z,. After compactification, the
above restriction implies the following set of equations:

0=¢ (rifpl-j + 21“3iF3l-) A, 0=¢ (rimDigm) A, o0=¢ (2r3“D3¢ﬂ 4o [¢a,¢b]) A,
0=¢ (Fi”Di%) A, 0 =€l [¢g,im]A, O0=¢ (21"3’“D3§m + [gm,gn]) A.

Here A is an 8-dimensional vector, the indices have ranges i,j = 0,1,2,4,b = 1,2,3, m,n = 1,2,3,
and there is no summation over a, m. After exploiting consistency conditions and symmetries, as done in
detail in [31], one finds that to satisfy the first condition at s = 0, the 4-dimensional gauge fields and
fermions must satisfy

e F* +9Fj =0, & (1+7By) o =0. (8.3.4)

where 7y is some constant and By = T'y56789 = [4I'5T¢I'7I'gT’g and €y, 0 are two 2-dimensional vectors™.
If v = —o0, we get the constraint Fij|y:O = 0, which imply Dirichlet boundary conditions for A, while
v = 0 implies El-ijB’k = 0, which correspond to Neumann boundary conditions on Ak 1t turns out that
to satisfy all other conditions in a non-trivial way, exactly one of the bosonic fields ¢, has to satisfy
Dirichlet boundary conditions, say (. Then we have

u _
D3¢a + > €abe (@b, Pc] =0, 0==¢y(1+uB)o, By = T'ys6, (8.3.5)

for the same constant u as in the previous section (this will follow below). Since we can set the scale of €
arbitrarily, we can write €y = (1 a) for some parameter a, upon which the first constraint tells us that
ot = (1 a). Writing out the constraints (8.3.4) and (8.3.5) then determines the constants 7y and u to be

2a 2a

1—a?’ S 1+4a?
One can now interpret this as follows: (¢?, A;) are part of a vector multiplet, while ({", A3) are part of
a hypermultiplet. Let us now consider all possible values of a.

For G = U(N), setting a = 0,00 means that v = u = 0. Recall that this implies that the bosonic
part (¢, A) of the vector multiplet obeys Neumann boundary conditions. Also, v = 0 implies that A3
vanishes, and we already assumed that { obeyed Dirichlet boundary conditions, so it vanishes too at the
NS5-brane. All together, we get exactly the boundary conditions that arise for D3-branes ending on an
NS5-brane located at x> = x” = x8 = x” = 0 with vanishing gauge theory 6-angle. This was shown in
[32].

*In this 2-dimensional vector space, By 1 > are represented by By = <Pl (1]> ,B1 = <(1) (1)> ,By = (é 701>
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If 2 # +1, the boundary condition (8.3.4) arises from the bosonic part of the Yang-Mills action with a
f-term or instanton term added:

1 1 0
S :7/ Pt | 2|F)2 —/ tr (EAE). 8.3.7
YM 2 Jiso xr(2| |)+87r2 szor( ) (8.3.7)

Varying this action with respect to A and no restriction on A at s = 0, we find that

5Syat = glz [ At (éé(FijFif)) n 8% /S L (™5 (FyF) ) (83.8)
- glz . Ay tr (FijaFff) +28% /S L (eijleij(SFkl) —0. (8.3.9)

so at s = 0 we have that
ngFif +28%2€i]”‘3pk3 =0=7=—7 iaaz = —%. (8.3.10)

We see that at @ # 11 the supersymmetric boundary condition s = 0 implies that we need to add the
topological 0-term to the worldvolume gauge theory for the D3-branes. Since the tangential part of the
gauge field is a multiple of the normal part, we can view the case of generic a as a generalization of the
Neumann boundary condition and the NS5-D3 bound state.

The last case is when a = £1. In that case, the roles are reversed and (, A, ) are part of a vector multi-
plet satisfying Dirichlet boundary conditions, while (¢, A3) are a vector multiplet. it turns out that this
describes a system of D3s ending on multiple D5s.

Finally, after the geometric Langlands twist we only affect the fermions in the theory, therefore for the
twisted theory the boundary conditions for the bosons are unaffected. Moreover, the boundary condi-
tions are local, so they are not changed when M is curved. We already saw that the topologically twisted
supersymmetry generator € = €; + te;, had a free parameter t. € satisfies

1-# 2t
1+i B B =0. 8.3.11

( et iTe 1>€ (8.3.17)
It is straightforward algebra to check that the vector ¢y = (—1[1) satisfies this relation too, if

a_l,l—it
1+t

(8.3.12)

Using this identification, it follows that using € = 7 ® € and the representations of By, By in Z3, where
1 is a generic 8-dimensional vector, is a generator of the topological supersymmetry, which satisfies the
%-BPS boundary condition of the NS5-D3 system with 8 # 0. Also, inserting (8.3.12) into (8.3.10) it is
straightforward to check that

£2

A

(8.3.13)
Hence, we see that a choice of 6 immediately specifies a and t.

8.4 Duality

We now put all the ingredients of the previous sections together. A priori, it is clear that the dual
theory to Chern-Simons theory on M is the 1-dimensional gauged o-model with target space M¢ =
{Connections on Ec — M} and symmetry group Maps(M, G¢). As one should expect, the superpoten-
tial W in this gauged o-model is exactly the Chern-Simons action. From (5.2.6) we find that the associ-
ated Morse function is h = Ay + 2Re W, where the first term is inessential since on semistable orbits,
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yu = 0 and y is preserved along downward flows (see (5.1.5)). Hence, effectively h = 2Re W, precisely
as was suggested in section 8.1. Hence this model localizes on the flow equation for Chern-Simons theory.

Analogous to the finite setting in section 4.4, the 1-dimensional point of view is that the twisted N/ = 4
SYM path integral on the half-space IR_ computes a Poincaré dual to the exotic integration cycle I'o for
Chern-Simons theory, which is set by the boundary condition at s = —oo, where the gauge fields have
to sit in a given critical orbit O. The full exotic integration cycle then follows by appropriately summing
the contributions coming from all Lefschetz thimbles Co, .

The observation is that this 1-dimensional gauged c-model can be constructed from compactification of
N = 4 SYM from R_ X M on M with a partial supersymmetric twist on M, which leaves 4 scalar
real supercharges. Hence, the dual 1-dimensional gauged c-model is just the generalization to infinite-
dimensional target space of the model discussed in section 5.2.1.

Recall from section 2.2.1 that the bosonic field content of 4-dimensional N' = 4 SYM is one gauge field
AM' u=0,...3and 6 scalars ¢;,i = 4,...9. To go to the 1-dimensional point of view, we compactify on
M with a partial topological twist. Let us discuss the bosonic fields. The twist is performed by embed-
ding the SO(3) Lorentz group of M in the SO(6) R-symmetry group such that ¢;,i = 4,5,6 become an
adjoint 1-form (since they have non-trivial R-charge) and ¢;,j = 7, 8,9 remain scalars. After the partial
twist, the residual components of the 4-dimensional gauge field A, are A;,a = 1,2,3, which combine
with the 1-forms ¢; into a complex connection Ay, = Ay + i¢, on the bundle Ec — M. A acts as a
coordinate on M¢ and therefore sits in a chiral multiplet. The gauge transformations on Ec — M are
gauged by the scalar fields A and ¢;, which sit in a vector multiplet. Note that we can always go to a
gauge where Ay = 0. The fermions are redistributed likewise.

The complexified Chern-Simons action (8.1.2) arises naturally in this model as a superpotential: recall
that the superpotential sits in the scalar potential Z as [JW|> C Z. Regarding W as a functional of the
complex gauge field A(x), it follows from the calculations in appendix D that SW = F 46.A. Using the
metric (8.1.3), it follows that

|dW|? :rZ/R XMtr}'A/\]:A (8.4.1)

gives exactly the kinetic term for the bosons in the chiral multiplet, from the 1-dimensional point of view
(from the 10-dimensional point of view, this term was a kinetic term for the vector multiplet).

The 4-dimensional view of this duality is that supersymmetric localization means that the twisted N' = 4
SYM path integral on R_ x M with action (8.2.10), analogous to the construction with the A-model,
leaves us with a ’boundary integration’: an integration over a middle-dimensional cycle in the space
of complexified gauge fields of Ec — M, which is just the Chern-Simons path integral over an exotic
integration cycle. The reason for middle-dimensionality is simply again that the Chern Simons flow
equation uses the real part of the complexified Chern-Simons action as a Morse function. Downward flow
then gives a middle-dimensional cycle, since the ‘Morse index’ of a critical orbit is exactly ‘% dimg Mc’.
The quotation marks indicate that really we should use the appropriate infinite-dimensional analogues
given by Floer theory: here we emphasize the conceptual idea. At the boundary then, the set B of
boundary values of all solutions to the flow equation are middle-dimensional in the set of all possible
boundary values. As familiar by now, 5 is interpreted as an exotic integration cycle for the boundary
theory.*

*Another example of this phenomenon is the following elliptic problem: given a holomorphic function on 9D = S!, by Cauchy’s
theorem it only extends to a holomorphic function on D if half of its Fourier-coefficients vanish, so only a middle-dimensional
subspace of all holomorphic functions on S! extend to D holomorphically. This is an elliptic boundary value problem, since the
Cauchy-Riemann equations are elliptic.
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Without knots

After setting up all the ingredients in the previous sections, we can conclude that after localization we
find the duality of path integrals

. to .
Z(0) = /C(gc/\/tc DAexpikScs(A) = /DADCIDD)\ exp (—SSfM> expikScs(A)ls_y- (8.4.2)

Chern-Simons path integral N = 4 SYM path integral

The boundary conditions are again left implicit in the notation. The full Chern-Simons partition function
is then given by

Z(Cr) =Y nsZ(Oy), (8.4.3)

where the expansion coefficients 71, are as in (8.1.11). Now we need to consider the boundary conditions
ats = —oo. These are determined by the semistable critical orbits: flat complex connection with 1 = 0.F

The boundary conditions at s = 0 on the fermionic fields in the SYM theory on {s = 0} x M must be
elliptic: the proof of this is in the appendix of [12]. The correct boundary conditions on the bosonic fields
at s = 0 are those of the D3-NS5 brane system with non-zero 8-angle, as discussed in section 8.3 in
(8.3.4) and (8.3.5). Note that these boundary conditions do not uniquely fix the values of the gauge fields
ats = 0.

Now a straightforward example is given by taking M = IR3 with no knots inserted. Note that in this
case, the topological twist is not necessary to preserve supersymmetry, but is required to get a theory
that localizes on the Chern-Simons flow equation. Recall from section 5.3.1 that semistable critical orbits
may have flat directions that cause infrared divergences in perturbation theory. However, on IR there
is only one critical orbit: the equivalence class of the trivial connection consisting of pure gauge connec-
tions A = dgg~!. This is a stable critical orbit since the equation dgg~! = 0 only has ¢ = constant as a
solution. The constant is fixed by requiring g to be 1 at infinity, which implies that indeed the stabilizer
of G contains only the trivial group element, hence the critical cycle is stable. Phrased differently, a flat
connection is specified by a homomorphism v : 711(M) — Gg, which measures the monodromy of the
flat connection around non-trivial cycles on M. Since M = R3 is simply-connected, v is trivial. So the
boundary condition at s = —co is just that the gauge fields approach A = ¢ = 0. We see that by
choosing M = R3 we can avoid semi-stable critical orbits and infrared divergences.

Recall that the Morse function /1 for Chern-Simons theory is perfect, as it is the real part of a complexifi-
cation of the real Chern-Simons Lagrangian. Therefore, there are no interpolating flows and so the exotic
integration cycle for CS without knots on IR? is equivalent to the original integration cycle, that is, we
have Cr = Cpure gauge = C.

With knots

Now we want to generalize by adding knots. First we need to determine where we can insert Wilson
loops on V. Consider twisted SYM on a general curved Z with twisting parameter t, with a non-zero
0-angle. A supersymmetric Wilson loop is a 11—6—BPS Wilson loop operator

Wk r(A) = trPexp jlg((A + o), feC. (8.4.4)

Note that we chose { = i in (8.1), where we assumed that 6 = 0. Here, and ¢ is the 1-form obtained after
twisting 4 of the 6 scalars of the N = 2 theory. Specifically, one has ¢, = Agyy- One can show that at

* Note that we might have zero modes of the Dirac operator on Z, which forces us to insert extra fermions to absorb the zero
modes. This would lead to an extra integration over the boundary, as the fermions represent differential forms constrained to
the boundary. Hence a non-zero number of fermion zero modes make the exotic integration cycle at the boundary above middle-
dimensional. We shall assume that no such zero modes exists, which will be true for our specialization to Z = R_ X R3 later
on.
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twisting parameter t # £i, such operators can only be inserted at dZ without breaking supersymmetry
completely, due to the product nature of the fermions at dZ. Since (8.1.8) are only elliptic for real t, we
see that we should insert knots K only at 9Z.

For the Wilson loop (8.4.4) to be a good observable, it needs to be Q-closed for the topological supercharge

Q:
[Q Wkr(A)] =0. (8.4.5)

The supersymmetry transformation for the gauge field is 6A; = i€’ A. It turns out that if the twisting
parameter t = =i, one can choose € such that

(Ty+iT4py) € =0, (8.4.6)

this was shown in [17]. So for t = =+i, Wk r(\A) is always a good supersymmetric observable. When
t # i, it is not. However, when W r(.A) is supported on dZ, the fermions €, A can be written as a
tensor product in Zg ® Z, as noted in section 8.3. Therefore, (8.4.6) can be reduced to

6" (1+i¢ByB1)eg =0, (8.4.7)

where the 2-dimensional vectors 8,€y € Z; are as in (8.3.5). By straightforward algebra one finds that
the condition is satisfied when

ér_1,012—1_1,L—zf—1_ [Im T (6438)
1T T2 T TR o
Here t should be chosen to be real, to make (8.1.8) elliptic. Note that if 8 = 0, then a = 0,00 and so
¢ = i, as expected. With this caveat, placing supersymmetric Wilson loops in dZ we get the equivalence
of path integrals

2(0,{k}) = [

DA kZcs(A Wk. r. (A
CoCMc <expl CS( )U K“Rl( )>

Chern-Simons path integral

= /DADCDDAexp (—Sé?M) (expikICS(.A)HWKi,Ri(.A)> (8.4.9)

s=0

N = 4 SYM path integral

The boundary conditions are again left implicit in the notation. The full Chern-Simons correlator is then
given by

(TTWkr (A)) = Z(Cr, {Ki}) = }_1nsZ(O0, {Ki}), (8.4.10)

where the expansion coefficients 11, are as in (8.1.11). Now we need to consider the boundary conditions
at s = —oco. These are determined by the semistable critical orbits: flat complex connection with y = 0.

fermionicFor the bosonic fields, the elliptic boundary condition at s = 0 far away from the knot should
be that of the NS5-D3 brane system. At the knot, they should approach a singular solution, that gives the
right monodromy around the knot. At s = —oo, the boundary condition is that the gauge fields approach
the critical orbit Oy. Again, the most convenient choice now is to take M = IR3, since 1 (M) is trivial.
There is only 1 critical orbit, the exotic integration cycle is equivalent to Cr and all other observations
made in the previous section hold.
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GAUGE THEORY AND KHOVANOV HOMOLOGY

For G = SU(2) Chern-Simons theory computes the Jones polynomial, which turns out to be a Lau-
rent polynomial with integer coefficients. As it stands, Chern-Simons theory does not explain why its
coefficients are integers. To explain this fact we describe a more powerful knot invariant than the Jones
polynomial: its categorification known as Khovanov homology. Essentially, categorification means that
we associate a bi-graded vector space to a knot instead of a number, in which taking a suitable trace gives
back the Jones polynomial. In fancier words: we construct a chain complex whose Euler characteristic
is a function of two variables ¢,q. Att = —1, the Euler characteristic is exactly the Jones polynomial.
Therefore, the coefficients of the Jones polynomial are integers: they count dimensions of vector spaces.
The reason that Khovanov homology is more powerful is that its chain complex is bigraded,

9.1 Khovanov homology: the construction

We shall be very pedestrian in our discussion of Khovanov homology, which is necessitated by the intri-
cate mathematical framework needed to fully discuss the construction. Here we shall follow [22, 23, 24,
25] and work exclusively with links in IR3.

First we describe the Jones polynomial in a different way. Earlier we defined it using the skein relation
(7.3.20), here we give an alternative definition. Given a link projection L, we define 14 as the number of
+-crossings (as in the previous section) and let X be the set of all crossings in L. We setn =ny +n_.
The Jones polynomial may be defined through the Kauffman bracket (.) that satisfies

@) =1, (OL)= (2 +472)(L),  (x)=(0)—q2(D). ©.1.1)

Here () is an unknot and, taking an unoriented crossing x, we defined a 0-smoothing and a 1-smoothing

XX (

(a) x (b) 0-smoothing (c) 1-smoothing

. . 1 .
For notational convenience, we now set # = 2. Moreover, we define:

the unnormalized Jones polynomial: J (1) = (—1)"-u"+ 2"~ (L),
Ju(u)
u+u-t

We now present the alternative: in the link projection, we forget the orientation and replace every link-

the normalized Jones polynomial: J; (1) =

crossing by either a 0-smoothing or a 1-smoothing. We get 2" different smoothings Sy, & € {0, 1}X that
consist of collections of topological unknots. We call the number of such unknots k and let the ‘height’
r be the number of 1-smoothings used in S,. To every S, we then assign the term (—1)"u" (u + u~ 1)k,
The Jones polynomial then follows as

1

_ (_q\n— ny—2n_
Jo(w) = (<1)"u —

Y (D) (u A u ) (9.12)

aneX
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The trefoil revisited.

The trefoil knot has ny = 3,n_ = 0,n = 0. There are 23 possible smoothings and their con-
tributions are:

000 (u+ut) 001 | 3- (=D 'u(u+ut)
011 | 3- (—=D2u?(u+ub) | 111 | (=1)3ud(u+u"1)

Note that the factor of 3 come from the multiplicities. So we find that

]trefoil(u)
— ﬁ ((—1)014372-0 ((u + u71> _31/1(1/[—0—1,{71) +3u2(u +u,1)) . u3(u +u71))
=u?+ub —ub.

This can be compared to table 4, noting that u = ql/z.

To get a homological complex, instead of assigning polynomials to a given smoothing, we want to assign a
graded vector space to it. Graded vector spaces are nice in the sense that addition and multiplication are
imitated by taking direct sums and products. Here, we construct the so-called sI(2)-Khovanov homology.
Starting the turn-the-crank recipe, we need a few ingredients.

o Let W = &,, Wy, be a graded vector space with homogeneous components {Wy, }, then the u-
graded dimension of W is dim,, W =}, u™ dim W,.

e We denote by - {I} the ‘degree shift’ operator on graded vector spaces. This means that W {I}, =
W,,_; so dim, W {I} = u dim, W.

e We denote by - [s] the ‘height shift’ operator on chain complexes. Soif C = ... — (" <,

C'*tl — .. thenC[s]" =C'>.

We now define V to be a vector space that is spanned by two elements v+ of opposite degree, for which
we have dim, V = u + u~'. Then given any smoothing S, as before, we assign to it the graded vector
space V(L) = v ek {r}. With this, we define the vector space [L]" to be the direct sum of all the V(L)
at height 7, or [L]" = @, =y Va(L). Note that we have dim, VO Lr} = u"(u + u~1)k. We now have
a long sequence

L =1L’ — ) —...— 1", (9.1.3)
from which we may define
C(L) =[L][-n-]{ny —2n_}. (9.1.4)

This complex can be endowed with a degree 0 differential d (it does not change the graded dimensions
of the spaces [L]"), which is further explained in [22]. Taken this as a given, we conclude that [L] really
is a chain complex, so we can speak of its homology. Since the differential has degree 0, the Euler
characteristic of the chain complex and the homology are the same, and we find by construction that it
equals the unnormalized Jones polynomial

Ju(u) = xu(C(L)) = (=1)"~u™ " x([L])
= (=1)"u"+ 2= Y (—1)" dim, [L]
= (=) 2 (D) (u+ u R 9.1.5)

o
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Denoting by H' (L) the r*h homology group of C(L), the last claim translates into
n
Ju(u) =) (=1)" dim, H"(L). (9.1.6)

r=0
The nice thing about Khovanov homology is that the vector spaces H are bigraded by the height r and
the power of u. Hence, we can define the Poincare polynomial of C(L) by
n
Khy(u,t) = Y #'dim, H'(L) = ) t'u*dimH"(L) (9.1.7)
r=0 r,seEZ

which by factoring out the u-dependence we explicitly indicated the bigrading of the homology groups
H"#(L). In the last equality, it is understood that only finitely many terms in the sum are nonzero. It is
through this bigrading that Khovanov homology provides a stronger knot invariant than the Jones poly-
nomial.

Khavanov’s theorem [23] now states that:
e dim, H"(L) is a link invariant
e and hence Khy (1, t) is a link invariant which specializes to fi (u) at t = —1.

Precisely, to make the connection to the normalized Jones polynomial J; () from table 4, we have
Khy (u,—1) = Jo(u) = (u+u"")JL(u?). 9.1.8)

To prove this, it is enough to check the invariance of [L] under the Reidemeister moves, which are the
basic ‘building blocks’ from which every topological change in a link diagram can be built up from.

Going through the recipe outlined above, it is straightforward to find Khy (u,t) for the trefoil knot,
namely for N = 2, the SL(2) Poincaré polynomial is

S+ ub+ut—1

5 (9.1.9)

Kha, (1, 1) = u (1 4+ u? + (1 + tu*)t >u~%) =

Normalizing by u + %, setting t = —1 and recalling that u = ql/z, this expression specializes to the

Jones polynomial for the trefoil in table 4. Some more examples are listed below.

K | Kh(u,t)
Figure-eight P+ tut+u+u T +u Tt T 72y 0
Solomon’s seal U u 2y T Sy ey 5y 15

Stevedore S tu+2u+u V8 25 By S 4y Y

Table 5: The Poincaré polynomial for Khovanov homology for some simple knots.

The 2 in sI(2) came in through the vector space we assigned to a given smoothing S,. In general, for
each value of N of sI(N), there is an combinatorial algorithm to construct a Z & Z-graded complex by
using matrix factorizations [24]. The sI(N) Khovanov homology is again a bigraded homological theory,
for which the above constructions follow analogously.

9.2 A gauge theory description of Khovanov homology

The duality between Chern-Simons theory and super Yang-Mills theory can now be used to give a gauge
theory description of Khovanov homology. Recall that the mathematical construction is entirely in terms
of algebraic relations that do not make it manifestly clear that Khovanov homology is a topological invari-
ant of a given link. Another observation was that Chern-Simons theory computes knot invariants, such
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as the Jones polynomial. This raises the question: what field theory then computes Khovanov homology,
which is the categorification of the Jones polynomial? In this section we shall describe the conjecture:
through the bulk-boundary duality, one can use twisted N' = 4 super Yang-Mills to compute Khovanov
homology.

The basic objective is to figure out how the field theory computes a (co)homological complex that corre-
sponds to the homological complex used in Khovanov homology. By the duality, G = SU(N) SYM on
N D3 branes wrapped on Z gives SU(N) Chern-Simons on dZ. Since showed that we can embed this
system in type |IB superstring theory, we can apply string dualities to the brane setup: first S-duality,
then T-duality.

S-duality is a duality of SYM theory that interchanges electric and magnetic charges and can be proved
for abelian gauge groups at the level of path integrals, as discussed in [53]. For non-abelian U(N),
S-duality is usually argued to hold by using its familiar embedding in superstring theory, as the world-
volume theory of a stack of D-branes. For other ADE groups, orientifold constructions are possible.
Another way is to use the AdS/CFT conjecture, which also relates A/ = 4 SYM to the type 1IB theory.
This is discussed, for instance, in [2].

Performing these dualities will lift SYM on Z to SYM on Z x S!, on which we can interpret the partition
function as a trace in a cohomological complex of physical states. This complex is conjectured to be
equivalent to Khovanov homology.

So why do we first apply S-duality? In general, if we apply T-duality on R? x S! in the presence of an
NS5-brane, the dual geometry is not R x S! again, but rather R® x T, where T is the Taub-NUT-space.*
This space is topologically R*, but has a radially warped metric given by

ds? — 41; (HO)d? + H () (dy +w-dr)),  1€R,, Vxw= grad%. 0.22)

Here » € R+ is a radial coordinate, r € T, H(r) = (% + l), w is a 3-vector, P € st parametrizes the

circle fibers and the curl is taken with respect to the flat metric on IR%.

{0}

Figure 12: The Taub-NUT space 7.

This 4-dimensional space looks like a higher-dimensional cigar and has an S!-fiber shrinking to zero size
at the origin: using quaternions, it is relatively easy to see that if r is small, the metric looks like that
of standard spherical coordinates, hence flat. If 7 is large, the metric looks like that of R3 x S!. Hence,

*From a reverse point of view, T-duality on the Taub-NUT circle fiber (exchanging momentum and winding modes) parametrized
by ¢ gives a dual circle parametrized by 6, it can be shown [33] that the metric then becomes

dskss = H(r) (dr-dr+d6%) + e - 010", (9.2.1)

which is the metric in the presence of an NS5-brane: the torsion terms gives a non-zero B-field. This is implied by the Busscher
rules, which tell us that the Taub-NUT metric is converted into a metric G and non-zero B-field B, the latter giving a non-trivial
NS5-brane charge.
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such a space does not accommodate an interpretation of the path integral as a trace. First applying S-
duality takes us to a D3-D5 brane system, upon which T-duality correctly maps us to a geometry with
everywhere non-vanishing S!-fibers (viz. R? x S1). Details on this can be found in [33, 29].

Applying S-duality: a new look at the Jones polynomial

At this point we want to apply S-duality to topological N' = 4 SYM on Z = M x R_, the geometric
setup discussed above. S-duality maps G to its Langlands dual LG, by interchanging the root and coroot
lattices. The important example for us is: “U(N) = U(N), since U(N) is the gauge group for the stack
of D3-branes. U(N) is not semi-simple, but reductive: it splits as a semi-direct product of the semisimple
SU(N) and the abelian U(1), so one can still talk about its root system. Note that the gauge fields on
the D3-branes sit in the adjoint representation of U(N), for which the U(1) in U(N) = SU(N) x U(1)
decouples.

Under S-duality, the modular transformation changes the Yang-Mills coupling constant

1
T— 17/ = ——. (9.2.3)
ngT
Here ng is the ratio of long to short roots of g, so ng = 1 for simply-laced g.* Under S-duality, the
twisting parameter t is mapped to

T T
V=4 —t=4,/=t (9.2.5)
7] T
which in combination with (8.3.13) implies tV = 1. To preserve chirality, from now on, we choose

tY = +1." Since tV = 1, the canonical parameter (8.2.7) transforms as

6 1
A - 9.2.6
27 ngk ©-26)

which means that k" is independent of the coupling parameter A"! The instanton winding number term
of the dual theory can be defined as

1 1
W=_——~—= (ENF 9.2.
2hV 32712 /Ztrud]( A )r (9.2.7)

which will weight an instanton by a factor exp(—i0VW) = g" in the partition function. Here we defined
the familiar variable g, for which we have the identification:

27ti 27ti
— _iaV) — it R e
q=-exp(—if’) =exp <ngk) =exp (ng(k g k)) . (9.2.8)

Here we made the identification k = k + & sign k analogous from the non-perturbative renormalization
effects in Chern-Simons theory. Since k" is independent of A, we can choose it to be arbitrarily small,
so that the partition function Z of the theory localizes on a sum of solutions of the localization equations
(8.1.8) at ¥ = 1, which combine tof

Ut U =F—¢pAp+xdap=0, U =dyxdp=0. (9.2.9)
*The S-matrix for this transformation is
-1
+ (\/% /Om> . (9.2.49)

The plus or minus sign here depends on applying an additional optional chiral symmetry to map D3 — NS5 to the D3 — D5
system. This will not be of relevance to us here, so we will pick the +-sign from now on. Thus, as also discussed in the appendix,
S-duality will transform the D3-NS5 system into a D3-D5 system.

#The index of the Dirac operator (the fermion kinetic term) of the theory calculates the expected dimension of the space of these
solutions, which corresponds to the number of zero modes of the Dirac operator. A non-zero index would require extra operator
insertions, for convenience, here we assume the index vanishes: this is true at least in the situation that Z = R_ x R3.
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Note that these equations are elliptic, as U*,U° are. Since A" can be arbitrarily small, localization
tells us that the semi-classical approximation is exact and the one-loop (quadratic) approximation to the
partition function Z is exact [4]. Z reduces to a ratio of fermion and boson determinants, analogous to
section (C.2.2). These determinants are equal up to sign, so every classical solution contributes 1 to
the partition function. Including the weights given by the instanton winding number term, a classical
solution contributes +4". The partition function thus reduces to an index

Z]S\/}/M(q, {K;}) = /DXexp {Q, Z} exp (—i8'W) N trground states(—1)Fg"V = Zanq” (9.2.10)
n

where 4, is the sum of all signs of instantons of winding number W = n. The number of such solutions
can be expected to be finite, since after imposing elliptic boundary conditions compatible with the Kj,
this is an elliptic boundary value problem, which generally admit a finite number of solutions.

One would expect that this generalizes to the case where Wilson loops are inserted on dZ, after set-
ting the right boundary conditions on the fields at dZ. Then (9.2.10) should represent exactly the Jones
polynomial: by the duality between Chern-Simons theory and SYM established previously, we expect
that

Z5"™M(q,{Ki}) = 757 (q,{Ki},C) 9.2.11)

on Z = R® x R_. Here the left side represents the SYM path integrals after S-duality, that is, they
are path integrals with tV = 1 and 't Hooft loops inserted on 9Z, whereas the left hand side is the
Chern-Simons path integral over an exotic integration cycle C with Wilson loops inserted.

The dual boundary conditions

Consider first the case without knots. So what is a suitable elliptic boundary condition? Ats = 0 a
suitable elliptic boundary condition follows from considering (8.1.8). We take u = 1 and impose A|y7z =
0, ¢slaz = 0, where ¢s]57 is the normal component to dZ. By rotational and translational invariance
in R® x {0}, we look for a solution for the tangential part of ¢ that is a function of s € R_ only. The
localization equation (9.2.9) then reduce to Nahm’s equations

d(l)ﬂ abe b rc

I+€ ¢’9° =0, a,b,c=1,2,3. (9.2.12)
Then a singular solution is simply ¢® = 7/s, where {7 are generators of the SU(2) Lie algebra that
satisfy [t7,t7] = e™°t°; the general solution then is ¢ = t*/s ..., where the ellipses refer to terms less
singular than % We impose this boundary condition at dZ = {s = 0}. At s = —oo the natural choice is

that gauge fields go to pure gauge.

In the theory with gauge group G, a link U;K; is represented by supersymmetric electric Wilson loop
operators inserted on 0Z = R3 x {0}. After S-duality or electric-magnetic duality, the Wilson loop op-
erators become 't Hooft operators, which describe the magnetic field generated as a charge travels along
a knot K. ’t Hooft operators are determined implicitly by the singularities on their support they create
in the worldvolume gauge fields. The insertion of such operators should set the boundary conditions on
gauge fields at dZ, in such a way that Z equals the same knot polynomial that Chern-Simons theory on
dZ would compute. However, not much is known about explicit expressions for general G and M, some
relevant calculations for G = SU(2) can be found in [29].

At s = —oo, the boundary condition was that the bosonic gauge fields approach a semistable critical
orbit of the Morse function 1 = Re e*Scg, consisting of flat Gc-connections with u = 0. Such a flat
connection is given by a homomorphism v : 711(M) — G¢. The dual flat connection should be given by
v¥ : 11 (M) — G¢, but in general not much is known about v". The trivial case is simple: if 711 (M) = 0,
then v = v" is trivial: this happens exactly in the situation of (8.4.2), where M = IR3.

Assuming v can be found, computing the Jones polynomial by counting instantons through (9.2.9) in
the S-dual picture can be interpreted as a new way of verifying electric-magnetic duality. More explicit
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calculations have been carried out already in [34] who found some agreement with this and the above
statements.

Since knot polynomials are Laurent polynomials, only a finite number of a;, should be non-zero, in the case
that 0Z # @. This can only be confirmed on heuristic and experimental grounds so far. Furthermore,
in general we might run into framing anomalies, which means that in general we need to add to the
action a gravitational term consisting of the Chern-Simons action for the spin-connection on Z, entirely
analogous to the discussion in chapter 3.

Applying T-duality: a new view on Khovanov homology

After the previous section, we formally gave a new way to calculate knot polynomials in the world-volume
gauge theory for a D3-D5 system. We now want to find a natural cohomological complex that we can
interpret as Khovanov homology. For this, we need to interpret the partition function Z3¥M (g, {K;}) as
an Euler characteristic of a cohomological complex. It is clear that to do so, we need to add a dimension
to the system: to get such an interpretation as a quantum mechanical trace, we need a circle S! in our
geometry, as we discussed in chapter 3. /' = 4 SYM can conveniently be thought of, in field theoretic
terms, as the dimensionally reduced version of 5d ' = 2 SYM on Z x S!. The 4-dimensional topological
supercharge Q lifts to a 5-dimensional topological supercharge Q, so that we also have that topological
N = 4 SYM lifts to topological N' = 5 SYM on Z x S'. Although this holds for any 4-dimensional
manifold Z, we will from nowonset Z = M x R_.

In a nutshell, the idea behind the main conjecture is the following: we can pick a point p € St and
perform quantization on Z X p from which we get a Hilbert space of physical states 7(Z). The path
integral on Z x S then is a trace in H(Z). Q acts on H(Z) and by nilpotency of Q we may denote its
cohomology as K(Z), which corresponds to the space of quantum ground states.

‘ Conjecture: the Q-cohomology IC(Z) is equivalent to Khovanov homology. ‘

From the brane perspective, we apply T-duality in the directions transversal to the branes in the D3-D5
system, which lifts us to a D4-D6 system, where the world-volume theory of the D4-branes is twisted
5d SYM. Geometrically, we compactify one macroscopic direction orthogonal to Z: T*Z x R? —
T*Z x R x S, so we can apply T-duality on the S*.

So what are arguments to support this conjecture? The main argument is that one can show that the
Euler characteristic of C(Z) computes the Chern-Simons partition function and correlation functions,
moreover, the geometry naturally supports such a computation. We expound on this below. Secondly,
the improved richness of Khovanov homology come from the fact that it uses a Z @ Z bigraded homolog-
ical complex. Analogously, states in X(Z) should sit in representations of some U(1) x U(1) symmetry.
These are provided by the instanton number, the operator W from (9.2.7), which on Z x S! should be
interpreted as an operator on JC(Z). The other U(1) is furnished by the residual R-symmetry (8.2.2) of
the twisted N' = 4 theory® : we call the generator of this U(1) symmetry F and so at least K(Z) is
properly bigraded by W and F.

We already explained formally how to calculate XC(Z) in section C.2.3. Consider first the 5-dimensional
equations for unbroken supersymmetry in twisted 5d A = 2 SYM, which read

1 1
F;U - 1B x B — EDVB =0, Fyu+ DB,y =0. (9.2.13)
In the time-independent case, these equations are equivalent to the localization equations (9.2.9) for the

4-dimensional twisted SYM theory, for a proof, see [29]. Hence, solutions to (9.2.9) correspond exactly to

*In the case of general Z, there is no residual SO(2) after a lift to 5-dimensional SYM, whose R-symmetry group is reduced
to SO(5). However, upon choosing Z = M x R_, we introduce an extra flat direction, which gives us again a residual SO(2)
R-symmetry. For general Z however, there always is a Z-grading given by the fermion number, of which our F can be seen as a
generalization.
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classical ground states of the 5d theory.*

Under the assumption of non-degeneracy, every solution to (9.2.9) contributes one ground state to the
space of classical ground states K (Z) of the 5-dimensional theory. Recall that the Morse function
Re Scg for Chern-Simons theory is perfect and is equivalent to (9.2.9). Therefore, there are no instanton
corrections, and all approximate ground states are exact ground states, that is: K. (Z) = K(Z).

Knowing KC(Z), we can compute its Euler characteristic

x(q,t) = tr(z) (thF) , (9.2.14)

in terms of two formal variables g, t. This trace should be expressed as a 5d SYM path integral on Z x S1,
as we recall that we need an S! in the geometry to compute traces. There, we may compute the partition
function of the space of all physical states H

try (thP exp (—/3H)) (9.2.15)

where B is the circumference of the S!, which we should view as the compact imaginary time direction
after Wick rotation. A supersymmetric pair with non-zero energy contributes a term

q" exp (—BE) (tf + tf“)

to the partition function. So in order to let only the ground states contribute to this expression, we need
tf + /41 = 0, which implies we should set t = —1. Only the expression E(g, —1) can be a topological
invariant. By the duality between Chern-Simons theory and topological ' = 4 SYM on Z, we must
have

Z5i (q) = x(9,—1) = tricuwr 9" (-1)F, (9.2.16)

where the expression on the left-hand side is the Chern-Simons path integral with an exotic integration
cycle. On Z = R3 x R_ with knots on IR3, Z]%(q) computes knot polynomials, as we explained in chap-
ter 7. We see that it would a natural interpretation that the right-hand side is the Euler characteristic at
t = —1 of Khovanov homology.

To actually prove this, one would have to show that this prescription gives the same calculational rules
as the algebraic description of Khovanov homology. The gauge theory proposal has the virtue of making
topological invariance manifest, but calculational principles non-trivial. This is the opposite of the situa-
tion in the algebraic picture. One of the open issues are the dual boundary conditions: as we remarked
earlier, it is not clear in general how to calculate S-dual flat G¢-connections v". This is not an issue
on Z = R3 x R_ where there are no non-contractible loops. This choice is actually convenient, since
Khovanov homology has only been defined for M = R3, 53, however, a more general picture is lacking.
Moreover, the boundary conditions at s = 0 are not known exactly for general gauge groups: the singular
behavior of gauge fields at dZ is not yet complete understood.

What is tempting though, is that one could have chosen M to be any non-compact simply-connected 3-
manifold. In that case, one would only have to contend with determining the right boundary conditions
on dZ. Assuming this could be done and the conjecture holds, this would significantly generalize the
degfini;ion of Khovanov homology to a wide array of manifolds, a good improvement over just M =
R?, S°.

*By analogy, recall that in the (gauged) Landau-Ginzburg model classical ground states correspond to critical points of the
Morse function h, which is just the superpotential. After localization, supersymmetric theories localize to the fermionic Q-fixed
points, which for supersymmetric quantum mechanics can be found through (??). Looking at the time-independent versions of
these fermionic Q-fixed points, these equations simply imply g—; = 0, which is exactly the condition for a classical ground state;

that is, the flow has to start at a critical point of h.
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THE ROAD AHEAD

In this chapter we will discuss consequences and open issues related to the field-theoretic duality we
discussed in the previous chapters. We start by a discussion of what the new duality tells us about
the consequences of S-duality for Chern-Simons theory. As we will see, this is linked to the meager
understanding of Chern-Simons with non-compact gauge group. Secondly, we will discuss how to lift the
construction of chapter 8 to M-theory and a recent constructive proposal for a gauge theory description
of the Poincare polynomial Kh(g, t) of (9.1.7). A basic reference for M-theory is [2].

10.1 Modularity and S-duality in Chern-Simons theory

Knot invariants as modular forms

In chapter 8 we applied S-duality to twisted N' = 4 SYM: the modular S-transformation as usual inverted
the SYM coupling constant for simply-laced G as

T= b 4m V= —1. (10.1.1)
2 ¢? T

and mapped G to its Langlands dual GV. As we saw in equation (9.2.10), upon localization this theory is
supposed to calculate knot polynomials Z$7 (9) = Z3YM(q) = ¥, anq" where we define g = exp h. For
the moment, we will assume that we normalized the unknot to have knot invariant 1. As we discussed,
for compact G, these knot polynomials are Laurent polynomials: they contain a finite number of nonzero
ay. By writing qh we therefore identified that i = k2+i;z’ where k is the usual Chern-Simons level and h
is the dual Coxeter number of G. Under the modular transformation, one would expect that the S-dual
version of SYM with coupling constant 71" should compute exactly the same knot polynomials, that is

ZiM(K,q) = ZyM(K,q"), (10.1.2)

since SYM is supposed to be self-dual under S-duality. Here we made explicit that in the S-dual theory,
the knot is represented by a ’t Hooft loop, the S-dual of the Wilson loop. Now dually, we expect that

Chern-Simons theory has a symmetry that maps i — —% and G to GV.

In more mathematical terms, one therefore expects that Zy;(K, g) should be a modular form, that is, an
(infinite) g-series that is invariant under the group of modular transformations SL(2,2Z). Explicitly, a
classic modular form is a holomorphic function f on the complex upper half plane satisfying

fely(2) = (cz+d)*f (‘ZIZ) = fi(z), 7= (Z Z) € SL(2,2). (10.1.3)

The study of modular forms provides an array of more weaker types of modular forms, such as mock
modular forms, quantum modular forms, which have variously nice behavior under modular transforma-
tions. However, it is immediately clear that for compact G, such nice modular behavior of ZM(K,q) is
not present: since k + h € Z, under a modular S-transformation,

g = exp ki—ilh — exp —2mi(k+h) = 1. (10.1.4)

Hence, it is impossible to study modular behavior for compact G.
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Therefore, one should upgrade to non-compact G, for instance by complexifying G to G¢, such that
k + h is not necessarily an integer anymore, so g is not an integer root of unity anymore. One would
then expect that generically G¢ knot polynomials are infinite g-series, which might have nice modular
properties. One should interpret such g-series as an extension of the finite knot invariants for compact
G, they truncate to the knot invariants for compact G when g is an integer root of unity. However, few
systematic calculations are known in Chern-Simons theory for non-compact G.

Experimental examples

In the mathematical literature some ’experimental’ work has lead to some specific results in this area.
For instance, in [35] the normalized SU(2) Witten-Reshetikhin-Turaev invariant W(x) of the Poincaré
homology sphere %(2,3,5) was studied, defined by

W(ezm/k) = ezm/k(ezm/k —1)Zx(%(2,3,5)) = ezm/k(ezm/k -1) /DA exp %CS(A), k=k+2.
(10.1.5)

The Poincaré homology sphere can be obtained from S by surgery around a (2, —3) torus knot with 2
Dehn twists. Defining

A=Y a0 =1 g P g g -0, gl <1, (10.1.6)
n=1

where a,, is defined as a,, = (—1)[”/30],112 = 1 mod 120, 0 otherwise, it was proven that

1-— %A(q) = W(e2m/ky, as g — e7/k, (10.1.7)
The proof is quite technical and relies on sophisticated manipulation of algebraic identities. Identity
(10.1.7) therefore gives an explicit example of a g-series that truncates at a root of unity to the SU(2)
WRT-invariant, but is well-defined when g is not a root of unity. Moreover, it was found that A(g) is
not precisely a modular form, but @, (q) = ql/lzoA(q) can be massaged into an ’almost’ modular form
at rational points in the complex lower half plane H_. We also define ®_(q) = ¢'/120 % | bnq”2/120,
where b, = (—1)[”/301,712 = 49 mod 120, 0 otherwise. To sketch the idea: one can define an auxiliary
function @*(g) that agrees with @(g) at rational points g in IH_. Under a modular transformation

v € SL(2,Z), one has then the equation

(=20 (G0 o (1) = (5). 0= (1Y) esrem

(10.1.8)

Here M, is an arbitrary matrix in GL(2,C) depending on 7y and Ry are further auxiliary analytical
functions. The function @ (z) are analogues of the so-called classical Eichler integrals* and are nearly
modular with weight 1/2: the discrepancy is given by the R. The highly non-trivial behavior in (10.1.8)
has lead to calling A(q) a quantum modular form in [36]: they are functions that are almost modular, up
to some ’nice’ auxiliary terms.

As another non-trivial illustration, the N-colored Jones polynomial Jn(K) for the torus knot T(p, q),
setting g = e", is given by
1

) £ Nileexp(hpq(kw;;y).

e=F1f=— N1

2sinh(Nh/2) :775((5)) = exp <—Z (

= =

(10.1.9)

* Given a modular form f(z) = Y5 1 a,4" of modular weight > 2, its Eichler integral f is the k — 1 primitive of f: f(z) =

Yo n kg, g% The @ (z) are then given by % (z) = 1/% i %,z € H_, where @4 (z) = 1 Y3 1 nayq",0_(z) =
3 Loq nbug™.
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This gives a definition of the N-colored Jones polynomial at arbitrary q. One can show that at ¢ —
e¥™/N "this formula reduces to the standard N-colored Jones polynomial. A special feature of this for-
mula is that it can be exactly related to the Eichler integral of the character of the minimal model M(p, q)
atg — e2m/N = the explicit calculation can be found in [37]. The starting point in the calculation is the
partition function or character of M(p, q) given by

A(pagnm)—5zc(pa)
ch(p,q,n,m;7) = tquO*iC(W) _1

pak® ( gk(pn—qm) _ k(pn-+qm)+mn
w5 1 )
(10.1.11)

wherel < n < p—-1,1 < m < g—1 label the irreducible highest weight representations with
conformal weight A(p,q,n,m) of the Virasoro algebra and g = exp 27it. Its Eichler integral at the
special values (n,m) = (s —1,1) is

or-11) (1/N) = exp(qum—i— p+q)nz>
Z +e 2ri +eq)\?
p ’7) exp | 2 <k+p €q> (10.1.12)

which equals (10.1.9) in the limit that 7 — % becomes an integer root of unity. The details in between
again rely on non-trivial algebraic manipulations.

For a slightly more physical picture, modular behavior of the SL(2,C) Chern-Simons partition function
was further analyzed on hyperbolic 3-manifolds in [38], where the modular behavior eventually was
traced back to the modular transformation properties of the quantum dilogarithm function. However,
what remains highly unclear from these mathematical results is how this modular behavior is reflected
in physical Chern-Simons theory in general.

Modularity in SL(2) Chern-Simons

A more complete explanation and physical interpretation of modularity in Chern-Simons theory has been

provided in [39], where it was shown that SL(2) Chern-Simons theory indeed has a modular symme-

try under it — 74%. Explicitly, by realizing Chern-Simons theory through a compactification of a

6-dimensional theory, an explanation for modularity could be given in terms of mirror symmetry on the
Hitchin moduli space.

The idea is to consider a system of M5-branes on M x S, which can be compactified in two ways: on
M or on S3 plus something extra. Setting M = R x X, we can compactify on X. This choice gives
4-dimensional N/ = 2 SYM on R x S3, whose gauge group and field content is determined by the choice
of £. On S3 an additional Q-deformation is made, which amounts deforming the diagonal metric on
S3. This is worked out in chapter 4 of [40]. The idea is that S% has a U(1) x U(1)-action, which can
be used to introduce a non-trivial monodromy around S'-fibers in S3: locally the fiber bundle does not
have a direct product structure anymore.* The ()-deformation introduces two parameters €1, €, and

*The minimal model CFT M(p, q) is characterized by the fact that every family of Virasoro descendants is finite, which as it
turns out, can be characterized by two integers p,q. This is covered in detail in [21]. N-colored means that the Wilson loops
sit in the N-dimensional irreducible representation of SU(2). This representation can be constructed for instance by taking all
homogeneous polynomials of order N — 1 in two complex coordinates z = (z1, 2 ), where the group homomorphism

7t : SU(2) — {Homogenous polynomials of order N — 1} (10.1.10)

for U € SU(2) is given by w(U) f(z) = f(U '2).

* For 3, one can use coordinates y*, i = 1,...4 in which S is given by ||y||> = 1. In polar coordinates, we can write
Y1 +iya = ue®, y3 +iyy = velf, (u,0) = (cosa,sina). The U(1) x U(1)-action shifts a, 8. An U(1) x U(1)-invariant metric
on S%is da? + f(a)da? + ¢(a)dB?. Introducing two auxiliary angular variables 61,65, the Q)-deformed metric is then given by

ds? = da® + f(a)(da — €1d61) + g(a) (dB — e2d6,)* + d6? + d63.
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one gets a Hilbert space 'HNZZ(el,GZ, S3) of physical states associated to the N' = 2 gauge theory
on (R x S3)¢,c,- On the other hand, compactifying on S with a topological twist on M gives SL(2)
Chern-Simons theory on M in the presence of the ()-deformation, see [41]. So alternatively there is a
Hilbert space Hgs () associated to quantization of the phase space of Chern-Simons theory: the space
M.t (G, L) of flat connections on R x X. The statement now is that

.€1

HN2(e1,60,®) 2 HES (D),  h= 27”5' (10.1.13)

From this it is clear that the modular transformation i — 11" corresponds to €; «— €5. The partition
function of the theory can also be obtained from this data, by looking at the mapping class group of X:
as this is not essential here, however, we will leave those details to [39].

The key idea is that one should study the Hitchin moduli space
$H=Mpg(GX) (10.1.14)

of solutions to the self-duality equations for gauge theory on a Riemann surface X, which are the familiar
equations F = dg x ¢ = 0. A key feature of My (G,X) is that it is hyperkéhler and that in complex
structure J, it is isomorphic to the space M, (Gc, Z) of flat Gg-connections on X.* The details can be
found in [17]. Recall from chapter 7 that M, (Gc, %) is the phase space of G¢ Chern-Simons theory
on any 3-manifold whose boundary is .

Associated to | is a symplectic structure ()], so that we can quantize (£,()]). With the observation
made above, upon quantization one finds that the Hilbert space of physical states is exactly 7—[%5 (2):
this tells us that any nice behavior of H and its quantization under S-duality will be reflected in /Hgs (=)

As the simplest example, one can now take ¥ = T2 and Gc = SL(2,C), such that
Ma(SL(2,C), T?) = (C* x C*)/Zy = (S' x Ry)?/Zs, (10.1.15)

given by the complexification of the U(1) x U(1)-rotation group that measures the winding numbers
around the non-trivial 1-cycles on T? (we’ll come back to this below). Note that this space is a toric
variety, it can be seen as the total space of a torus fibration. The importance of this example is of course
that the knot complement in a simply connected 3-manifold is exactly a manifold with a T? as boundary:
the torus that surrounds the loop of the knot.

In o-model language, we can think of the c-model with target space . In this setting, it can be shown
that S-duality amounts to mirror symmetry plus an extra hyperkéhler rotation:

S-duality <— mirror symmetry o (K]:f]> . (10.1.16)

This was shown in [17]. Now the mirror of M,t(Ge, T?) is well-known: from [42] we learn that it is
just = ./\/lﬂat(Go\:/, T?)! In our example, one finds by interchanging roots and coroots that the mirror
dual to SL(2,C) is SO(3,C). Note that the hyperkéhler rotation does not affect this statement: it only
modifies the classification of branes. By our earlier identification, this means that the two Hilbert spaces

HgS(TZ) and Hgvs(Tz) are isomorphic. The intuitive idea now is clear: knot invariants are computed

in Chern-Simons theory by surgery: this defines algorithmic operations in HGS(O, T?) which amount to
the skein relations such as (7.3.20). Hence, one would expect that this isomorphism respects the skein
relations and implies modular behavior of knots invariants.

This can be checked. When ¥ = T2, flat connections are conveniently parametrized by their C*-valued
holonomies around the non-trivial 1-cycles of T2. Specifically, the holonomies are given by two C*-
valued numbers m = e*,] = ¢! modulo the Z, Weyl action m — m~1,1 — 171, The notation I, m

* The complex structures on My (G, Z) correspond to splitting the three real equations F — ¢ Ap = dy x ¢ = da¢p = 0 into
one complex complex and one real equation. All the details can be found in chapter 4 of [17].
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refers to the longitudinal and meridian cycle on T? respectively. Suppose now that we have a knot K in
a simply-connected 3-manifold, where T? surrounds the knot K. [ and 1 can be taken as coordinates for
Mi.t(Ge, T?), since flat complex connections are uniquely characterized by their holonomies around
T2, or equivalently, K. It turns out that flat connections A are completely captured by the A-polynomial
A(1,m): one has that

M (Ge, T?) = {A | A(l,m) =0}. (10.1.17)

Heuristically, the A-polynomial classifies those flat connections around ¥ = T2 that extend to flat con-
nections in the bulk M.

One can now explicitly construct the action of S-duality on flat complex connections in M = R x T2 by
studying the A-polynomial. For example, for a (p,q) torus knot in R x T? one finds the A-polynomial
ImP9 4 1. By applying the operations in (10.1.16) one finds that the dual A-polynomial is AV (1%, m?) =
A(—1,m)A(l, m). This shows explicitly what the dual flat G"-connections are.

This story can be generalized to any manifold whose boundary is T2 and to an arbitrary gauge group, as
long as the mirror map holds between M, (Gc, T?) and Mt (G, T?). One can show explicitly that
$ and § fiber over a certain base space B and that in general, $§ = (C*)" x (C*)" /W, where W is the
Weyl group of reflections. Hence mirror symmetry is guaranteed by the SYZ picture of mirror symmetry
(see [43]): mirror symmetry amounts to T-duality on the torus fibers over B.

10.2 M-theory and gauge theory dualities

In chapter 8, 5-dimensional A/ = 2 SYM was central in the gauge theory proposal for Khovanov homol-
ogy. Recall from (2.1.2) that the field strength is the curvature F,, = [Dy, Dy]. Since D), has dimension
1, Ay is of dimension 1 too, so by power counting, the Yang-Mills coupling constant g has negative di-

mension in dimension 5, as it appears inversely in the Lagrangian as L ~ glz tr F2. Hence the coupling

grows under the renormalization group flow: this implies that the theory becomes strongly interacting
at high energies and therefore naively is not UV-complete. From a field theory point of view, using this
description is therefore slightly dissatisfying.

However there is a more complete M-theory picture, since 5-dimensional N’ = 2 SYM can be seen as
the dimensional reduction of a 6-dimensional (0,2) superconformal field theory, which is UV-complete.
In this picture, the D4-branes come from a dimensional reduction of a stack of M5-branes, whose world-
volume theory is the (0,2) SCFT. Few concrete details are known about this theory, in part since so far
no Lagrangian description is known. It is possible that therefore, one should think of the M5 branes as a
purely quantum object, for which no (semi-)classical description is possible. Despite this incompleteness,
one can still describe the gauge theory duality of chapter 8 by starting from an M-theory setting.

The idea is to consider M-Theory on X x T, where X is 7-dimensional and T is the 4-dimensional Taub-
NUT space. A system of N M5-branes on a 6-dimensional manifold V x R? C X x 7. R? inherits from
T acigar metric:

ds®> = dr* + f(r)d¢?, re Ry, ¢ € [0,27]. (10.2.1)

where we choose f () to be suitably decreasing as r — o0, such that circles at every r > r( have the same
radius, for some 79 > 0. In this description, there always will be a singular circle fiber at the origin. We
can now dimensionally reduce on the circle fibers, which gives a space R?/U(1) =2 R, where the U(1)
represents rotation on the circle fibers. From the 11-dimensional perspective, this dimensional reduction
gives type IIA superstring theory on X x T /U(1) = X x R3. The subtlety now is that there is a D6-
brane supported on X x {0} C X x R3, where {0} corresponds to the boundary of R, the fixed point
of the U (1)-action. The M5-branes wrapped on V x IR? become D4-branes wrapped on V x R, so we
obtain exactly the D4-D6 system we obtained after T-duality in section (9.2.3), with the identification:

Z=M3xR_, V=M3xS, R_=R,, VxR,=ZxS' =M;xR_xS.
(10.2.2)
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10.3 Categorification from ()-deformations and refined Chern-Simons theory

In chapter 8 we discussed a new proposal for a gauge theory description of Khovanov homology as the
space of quantum ground states in 5-dimensional A/ = 2 SYM in a D4-Dé6 brane setup, with the D4-
branes living on R3 x R, x S!. We have seen that this system can be lifted to M-theory.

A constructive, more limited, proposal for a gauge theory definition of the Poincaré polynomial has been
made in [44]. Recall that the essential feature of Khovanov homology was that it gave us a bigraded
structure on the knot invariants, which made it generically stronger than, for instance, the Jones poly-
nomial. In chapter (8) we described a proposal to find directly the bigraded homology groups that give
the Poincaré polynomial Kh(g,t) defined in (9.1.7). The idea in [44] is to directly find Kh(g, t) from a
so-called refinement of Chern-Simons theory, which furnishes an extra grading in the theory.

To understand this setup, we first need to define refined Chern-Simons theory on a special class of 3-
manifold M. The to-be-defined refinement will generate an extra grading in the theory. Having set this
up, we then explain the relation to Khovanov homology by using the large N dual.

An interlude on the topological string

Recall from our discussion of zero modes in the topological A-model, we found the expression (3.3.9),
which gave a selection rule for A-model correlators. A salient detail of this formula is that it shows
that even if the target space is Calabi-Yau, still only worldsheets with ¢ < 1 can contribute to non-zero
A-model correlators. There is a straightforward way to remedy this: coupling of the A-model to topolog-
ical worldsheet gravity. After this coupling, an extra contribution to the index calculation coming from
the metric moduli ensures that on Calabi-Yau target spaces, the topological string actually never has an
anomaly.

Coupling to topological gravity here means that we want to add a Einstein-Hilbert term #fz R for the
worldsheet metric h. Normally, one would then deal with gauge equivalence given by worldsheet diffeo-
morphisms by doing the Fadeev-Popov procedure and add an additional path integral over the space of
all worldsheet metrics.

This procedure superficially can have issues concerning anomalies of the gauge symmetry of worldsheet
diffeomorphisms at the quantum level and subtleties generated by large diffeomorphisms. Concerning
the first issue, one finds that there is actually no conformal anomaly in the A-model, as the central
charge ¢ always vanishes for the topological A and B-model. This is a simple consequence that at the
level of worldsheet currents, the topological twist corresponds to a shift of the stress-energy tensor
T(z) — T(z)+ 39](z), implying that after twisting its Laurent modes T(z) = Y., Lyz™™~2 satisfy
Ly=1Ly— %(m + 1) ] Straightforward algebra then shows that there is no central charge term left in
the commutator relation for L,;:

(L, Ln] = (m —n)Lyin. (10.3.1)

With respect to the second issue, one can show that a worldsheet of genus g has 3(g — 1) metric moduli.
A simple example follows by considering the torus: it has a residual complex modulus T parametrizing
the skewness of the torus seen as a lattice C/(ZRe T @ iZlm T) where T € C. This modulus cannot be
fixed by conformal transformations, which by definition preserve angles (recall that we can only use the
conformal invariance of the 2-dimensional o-model (string theory) to fix the metric).

One can now check the structure of the OPEs of the worldsheet currents in the A-model are analogous
to that of the bosonic string. This tells us that it is straightforward to couple the topological A (and
B)-model to topological gravity: we can just additionally add an integration over the moduli space of
worldsheet metrics! This is the definition of the topological string [45, 46]. It is then straightforward to
show that the total axial R-charge becomes 6(¢ — 1) — 2d(g — 1), where d is the complex dimension
of the target space M. From this we see that the topological string is richest when the target space is
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a Calabi-Yau 3-manifold. It is a nice coincidence that these are exactly the spaces that are suitable for
superstring compactifications.

Refined Chern-Simons and M-theory

The refinement works in the following way. For any 3-manifold M, SU(N) Chern-Simons theory on M
is equivalent to the open A-string on T*M, with N Lagrangian A-branes on M. Here, the string coupling
gs is related to the Chern-Simons coupling k and dual Coxeter number i = N as

27t

&= TN (10.3.2)

It is a mathematical result that there are no holomorphic embeddings of the worldsheet X into T*M, so
that only degenerate maps can contribute upon localization for the A-string. One finds in this special case
that the constant, degenerate maps, give exactly all the perturbative diagrams of Chern-Simons theory,
so that we have

Z57 (g = %) = Z{ pi(gs)- (10.3.3)

In this description, adding a knot K C M corresponds to adding a non-compact Lagrangian A-brane L,
which comes with a flat bundle E — Lg. L is chosen such that Ly " M = K.

Lk

K M
Figure 13: A knot K by intersecting M with a Lagrangian brane Lg.

So how do we get the open topological string from M-theory? Recall that we considered M-theory on
X x T in section (10.2). We now make a choice for the background as

(Y x T xSY,, (10.3.4)

where Y is Calabi-Yau. The subscript here indicates that this space is a twisted product: the Taub-NUT
space T is twisted non-trivially around the circle S'. Here, we can take 7 to have the same complex
structure as C2. This twist is specified by defining that by going around the S' once, the complex
coordinates z1,z; on 7T are rotated by z; — qz1,2p — qilzz. The partition function of the closed A-
string corresponds to the M-theory partition function on this background. Since we’re interested in the
open A-string, we need to add N M5-branes on (L x C X Sl)q, where L is a Lagrangian submanifold in
Y and C C T (the plane spanned by z1). The partition function of the M5-branes turns out to be

Zms(Y, L,q) = tr ((4)%;51—52) = Zopen(Y, L, g5), (103.5)

where S1 are the generators of the U(1) rotations along z1 » and F = 25 is the fermion number. The
second equality follows by construction.
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The twisted space (10.3.4) is a special case of an Q)-background, one says that (Y x S! )q is an Q-deformed
space. The general Q)-background is the case where we twist the circle fiber by saying that going around
a circle fiber once, we map z; — gz1,22 — t~1z,. Obviously, if t = g, we specialize to the case above.
The resulting space is denoted by

(Y x T x SYor (10.3.6)

The problem is that this choice spoils supersymmetry: recall that any supercharge Q must have half-
integer eigenvalues under the U(1)-rotations. From (10.3.5), we see that it is possible to have a su-
percharge Q that has S; — Spy-eigenvalue 0, such that (10.3.5) defines a good supersymmetric index.
However, in the general case, the partition function would be

tr <(_1)qu1th2> . (10.3.7)

Clearly, no supercharge can have vanishing Sq, Sy-eigenvalues separately: this means that states with
non-zero energy will not cancel out in the partition function anymore: supersymmetry is broken. So we
need to twist by an extra U(1)g R-symmetry, to obtain one we need to take the Calabi-Yau Y to be non-
compact. On a non-compact Y, the effective 5-dimensional worldvolume theory on Y obtains an extra
U(1)r C SU(2)g symmetry. Asimilar twist is needed when adding M5-braneson Y = (M x C X S1) 4.
This puts an extra constraint on M, one can show that in the generic case M has to be a Seifert manifold.
A Seifert manifold is an S fibration over a genus ¢ Riemann surface, the U(1)-action being provided
by the rotation of the fiber. Note that at some points, one can have a discrete stabilizer, but this is well-
behaved with respect to the twisting, for the same reason in (5.1.2). The most simple example is S3, which
is Seifert by viewing it as the Hopf fibration.*

After twisting, one defines the partition function
Zopen(T*M, q,£) = tr ((=1) g% —5S0e52058) = Zc5(M, g, 1), (10.3.8)

where the final term is the partition function of the refined Chern-Simons theory. We can now have a
supercharge with eigenvalues (%, %, %) under (S1, Sz, Sr), which restores supersymmetry.

If we add a Wilson loop on a knot K C M, the knot insertion has to respect the extra R-symmetry on
the Seifert manifold M, such that the twist remains valid. It follows that this means the Wilson loop has
to be inserted on the S! fibers on M. An intuitive reason is that in that case, the U (1) g-orbit is the knot K.

The refined theory is not an alternative definition of Chern-Simons theory, as the Lagrangian is un-
changed under the refinement. However, the coupling parameters of the theory are redefined, the knot
invariants computed by the refined theory now are function of g, ¢, instead of just . The computation
of knot invariants in the refined theory is completely analogous to the way knot invariants are com-
puted in the unrefined theory, namely by exploiting gluing and pasting operations on the knot K and the
background M as in section 7.3.

Large N dual

In the previous section we defined in (10.3.8) the partition function of refined Chern-Simons theory by
exploiting the link to M-theory. The question now is why this expression should match the Poincaré
polynomial Kh(g, t) from (9.1.7). It is argued in [] that to make such an identification, one should at least
identify a relation between g and t by going to the large N dual of refined Chern-Simons theory.

Let us first discuss this for the unrefined case. In the two papers [47, 25] a physical interpretation of Kho-
vanov homology was given. The first starting point in [47] is the idea that for unrefined Chern-Simons
theory, its large N dual is known. Namely, SU(N) Chern-Simons on S3 has a large N dual given by the

* Identify R* =2 C2. Then S3 is the locus of |z1|? + |z2|2 = 1 and S? is the locus |z1]2 + (Re z2)? = 1. Define 7(z1,22) =
22123, |21|? — |z2|?), then it is easy to check that 7(zq,2;) lies on S? in C x R when (z1,22) € S°. Now note that if 7t(z1,22) =
7t(wy, wy) iff (wy,wa2) = A(z1,22),|A|? = 1. Hence the inverse image of 771 (x) is a circle for all x € S? and S% is a disjoint
union of all these fibers.
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closed topological string on the conifold X = O(—1) ® O(—-1) — CPl* N is then related to the size
of CP! C X.

In [44], it is argued that a similar large N dual can be found for the refined version: its dual should be
the refined A-string. Using the same M-theory duality as explained above, leads to the conjecture that
the Poincaré polynomials of SL(N) Khovanov homology are computed by refined Chern-Simons theory.
This conjecture has only been been confirmed in a few simple cases, moreover it is limited to the case
where M is Seifert and torus knots are inserted.

So how does this work? Suppose that no knots are inserted on S3. Then using the notation as above, the
dual theory at large N should be the refined closed topological stringon X = O(—1) & O(—1) — CP..
One can show that the partition function in this background is

(e Ai’l
Zelosed(X, A, q, 1) = exp <— n; n (72— ) (72— ) , (10.3.10)

where A = exp (—Area ]Pl) = gV = ¢8N. From cutting and gluing procedures like those in (7.3), one
has that the refined Chern-Simons theory has partition function

N -
Zes(S,q,t) H H — tN=igm)i H]o—o[ — tN=igmyi, (10.3.11)
m=0 i=1 m=0i=1

where we identify t = gf, € IN and we took the N — oo limit. Here Sy is a matrix element in the
group SL(2,Z) of large diffeomorphisms of T2. The last expression works out to be exactly (10.3.10) by
simple manipulations and another identification: A = tN+1/2q_1/2.

Note however, that this argument uses the large N duality; all knot polynomials that are computed and
have been checked use small N, typically N = 2,3, .. .. Therefore, the agreement in calculations obtained
n [44] is surprising.

A conjecture

The concrete proposal to compute Kh(g,t) in refined Chern-Simons theory now is the following. By
using the identifications between gq,t, A quoted earlier, one can compute by surgery (as in the unrefined
case) the normalized knot invariant Z(S3,K)/Z(S3, ), where () is the unknot. Now we needs to set

a=vt b=—\/q/t, c=VA, (10.3.12)
so that
Z(8%,K)/Z(S%,0O) = f(a,b,c). (10.3.13)

Note that upon setting t = —1 and ¢ = g%, one gets the SL(N) HOMFLY polynomial. The conjecture is
that

flget)=Y tg/ck dim HYK(K), (10.3.14)
ik

which upon setting ¢ = gN computes the SL(N) Poincaré polynomial Kh(g,t). Here H"*(K) are the
homology groups that categorify the SU(N) knot invariants, the bigraded HOMFLY polynomials. For

* The weighted bundle O(n1) @ ... ® O(n,) — P17 is defined as the space CP™71/(CP x {0}441) with identification of
coordinates given by

(21, zp, w1, wgq1) ~ (AMzy, . APz, Awy, . Awog 1) (10.3.9)

for A # 0. The conifold comes from the S — S? geometric transition: the conifold singularity ||y| |2 0,y € C* can be described
as an S2-bundle, since one can rewrite the defining equation as ab—cd = 0 == a = Ad,c = —Ab;a,b,c,d € C. Taking
A € §% =~ CP!, this equation is the defining equation for the bundle O(—1) @ O(—1) — S%. A resolution of the singularity can
be given in two ways: one can deform to the total space of T*S? or to that of the quoted bundle.
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N = 2, these specialize to the case of the Jones polynomial and its categorification, Khovanov homology.

Going through this procedure, it was checked in [44] that one gets exact agreement for Kh(g, t) (see also
table 5) for the trefoil and torus knots of type (2,2m — 1). For other knots, it is less straightforward
to determine the surgery matrices S, T from section 7.3.2 that facilitate the computations, those cases
remain to be checked against this conjecture.

Physical interpretation of Khovanov homology

Conjecture (10.3.14) is based on a conjecture for a physical interpretation of knot categorifications which
was posited in [47] and extended in [25]. We cited earlier the large N dual of unrefined Chern-Simons
theory. Moreover, we saw the duality of the A-string on X with M-theory on (X x T x Sl)q. Using
these two dualities one can interpret the conclusion in [47] by saying that knot invariants on S3 can be
computed by counting BPS states™ of the M2-M5 brane system on (X x T x Sl)q, where the M5-branes
are wrapping Lk. That is, one has

ZS(K,$%,V,q) = Zimo-ms(Lx, X, V, ). (10.3.15)

In the intermediate step between Chern-Simons and the topological string, the relation between SL(N)
Chern-Simons knot invariants and the topological string was conjectured to be

In(q) = - — Y No«Ve, (10.3.16)
q—4 5,QeZ

where the integers N g count the number of BPS states in the string Hilbert space. The subscript
O indicates that we take the Wilson loops in the fundamental representation (J of SL(N). The main
point of the right-hand side of (10.3.15) is that it is computed by a trace in a triply-graded vector space
’Hg};gz’Q(LK), the space of BPS states in the M2-M5 brane theory. In the M-theory picture, the grad-
ing is provided by the two generators S1, of U(1)-rotations on 7T as before and the M2 brane charge

Q € Hy(X,Z). Again from the M-theory perspective, [25] conjectured that the Hglp’gLQ(LK) are iso-
morphic to the triply-graded homology groups Hl'J'k(K). From the topological string perspective, the

correspondence at the level of Poincaré polynomials was conjectured to be

(=g HKh(g,t) = Y DgsqNotst, (10.3.17)
Q,s,r€Z

where the integers Dg 5 ,s are defined by

Nogs = ), (=1)"Dgs- (10.3.18)
reZ

Although this conjecture has not been proved rigorously yet, it can be checked in the affirmative for a
few simple knots, as has been done in [25].

* BPS states sit in short supermultiplets that arise by considering the case with ZAB £ 0in (2.2.1). Depending on the values
of the eigenvalues of Z4B it is straightforward that less of the supercharges satisfy a fermionic oscillator algebra; recall if they do
they can be used to construct raising and lowering operators. Hence, in that case, the admissible supermultiplets become shorter.
In general, D-branes break part of the space-time translation invariance, since the open superstring only has A’ = 1 worldvolume
supersymmetry. Hence D-branes break supersymmetry partially, and hence can be viewed as BPS states in the type IIB theory.
More details can be found, for instance, in [2].
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CONCLUSION AND OUTLOOK

Summary

At this point, we have reviewed several topics in mathematical physics. In the first half of this thesis, we
discussed supersymmetric gauge theories and supersymmetric localization. We then discussed topologi-
cal supersymmetry, in order to define supersymmetry on curved manifolds. The open and closed A-model
and topological branes were covered at length, together with their categorical descriptions.

We then continued by discussing an application of Morse theory to field theory: it gave a way to re-
express path integrals by using Morse theory after complexifying the source theory. We then applied this
technique to quantum mechanics and showed what the technical subtleties were in applying this to the
simple harmonic oscillator. Details on a new view on quantization by using the A-model were also given
and we showed how this applies to the SHO.

After explaining how Chern-Simons theory computes knot invariants, we applied the duality to relate
N = 4 super Yang-Mills theory on a half-space to Chern-Simons theory in the boundary: we saw that
it was most preferable to do this on a half-space R® x IR_. This gave a new way to compute the Jones
polynomial by counting solutions in an elliptic boundary value in 4 dimensions. Lifting the theory 1
dimension higher then allowed us to reinterpret the Jones polynomial as a trace in the space of super-
symmetric vacua of the resulting 5-dimensional super Yang-Mills theory. It was then argued that its
space of vacua should be viewed as Khovanov homology.

We then ended with a discussion of the implications of the latter application: the algebraic structure
of Chern-Simons theory. A discussion of the role of modularity in Chern-Simons theory was given and
the M-theory setting of the duality between Chern-Simons theory and N’ = 4 SYM was highlighted.
In the latter case, we reviewed a recent conjecture that the Poincaré polynomial of Khovanov homology
can be explicitly computed using refined Chern-Simons theory, in a setting that is closely related to the
M-theory setting of [29].

The main theme of this thesis has been the relation between geometry and physics and the key role that
various dualities play in understanding the structure of models that embody this connection. Starting
with 3-dimensional Chern-Simons, we saw that it can be totally solved by its relation with 2-dimensional
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conformal field theory through the Wess-Zumino-Witten model. Moreover, Chern-Simons theory can
be equated to 4-dimensional supersymmetric gauge theory through the exotic cycles that we discussed.
Subsequently, this can be lifted to 5-dimensional gauge theory and the 6-dimensional worldvolume the-
ory of M5-branes in M-theory. This establishes an intriguing cascade of dualities, which indicates the
richness of this subject.

Open questions

Starting from the 1D-2D correspondence, we showed that the exotic duality leads to the A-model quan-
tization of classical phase space. Quantization for topological non-trivial phase spaces is still an ambigu-
ous and ill-understood subject. However, an application of better understanding would be the study of
Chern-Simons theory with non-compact gauge group, which is conjectured to give a model of 2 + 1D
quantum gravity and should lead to new knot invariants.

Going up in dimension, showing the gauge theory proposal for Khovanov homology is still an open ques-
tion. We already indicated what should be done: one should deduce the algebraic rules of Khovanov
homology from the gauge theory description. Furthermore, we saw that there is a new way to compute
the Jones polynomial: by counting classical ground states in twisted N’ = 4 SYM after S-duality. This
leads to a new link to statistical physics: the Gaudin model of XXX spin chains. This link is yet to be
developed further.

It would be interesting to see if knot invariants for other compact gauge groups, such as Kauffman’s
polynomial for G = SO(N) can be given an analogous gauge theory description using exotic integration
cycles. In any case, one can construct SO(N) gauge theory (more generally, any simply-laced group,
with ADE root system) on a stack of D-branes on orientifolds, so that case superficially seems to admit a
straightforward generalization of the relevant construction.

Discussing modularity in Chern-Simons theory, we also mentioned that a better insight in Chern-Simons
theory with non-compact gauge group can be obtained by studying M5-branes on M x S3, which after
appropriately compactifying leads to SL(2) Chern-Simons theory and N’ = 2 SYM. Understanding this
relation and generalizations is related to the AGT duality, the notion of geometric engineering and could
lead to a more complete picture of the internal structure of these gauge theories.

In chapter 8 we discussed how to find exotic integration cycles for Chern-Simons theory on M, where
we argued that adding Wilson loops on a knot K does not change the convergence of the path integral
on an exotic integration cycle, as the Wilson loop is linear in the gauge fields in the exponential, while
the Chern-Simons action is cubic. This is related to the scaling limit in which k becomes large and the
representation of the Wilson loops remains fixed, that is, the highest weight of the representation (the
‘electric’ charge) that the Wilson loop sits in, is kept fixed. In this picture, we are describing Chern-
Simons at weak coupling. However, one can look at the case where the charge n of the Wilson loop and
the Chern-Simons coupling k are sent to co while ¢ is kept fixed. This leads to the knot cobordisms of
Khovanov homology and allows to complexify the Jones polynomial in terms of exotic cycles that come
from critical orbits that include monodromy around K. This picture is related to the Volume conjecture
in knot theory, which is a statement about the asymptotic behavior of the N-colored Jones polynomial in
the limit of N — oco. This statement has been partially understood in [28].

Finally, A-branes and B-branes are conjectured to be related through homological mirror symmetry, the
mathematical counterpart to physical mirror symmetry. The latter can be regarded as generalized T-
duality when the space-time allows torus fibers. In general, mirror symmetry is unproven, but is strongly
related to the geometric Langlands program, which revolves around a set of deep conjectures in algebraic
geometry and related areas, such as category theory. Especially, it gives a geometric reformulation of the
Langlands program, which spans a wide array of conjectures in number theory. Gauge theory, branes
and S-duality play a big role in geometric Langlands, as worked out in [17].

This list is of course far from comprehensive, but already indicates that much more remains to be discov-
ered in the intersection of mathematics and physics.



A

MATHEMATICAL BACKGROUND

In this appendix, we discuss some relevant mathematical concepts. Further references for homology and
cohomology theory, fiber bundles and characteristic classes are [48, 49], which are not discussed here.

A.1 A note on equivariant cohomology

Starting from a more abstract point of view, a possible motivation to study symmetry phenomena on
manifolds is the following observation. Suppose we have a continuous vector field X with isolated zeroes
on a compact oriented 2-dimensional manifold X, then by the Gauss-Bonnet theorem and the Poincaré-
Hopf theorem for the index of any smooth vector field X with isolated zeroes, we have

1 / :
— | KdA=x(Z)= ) indexx(p). (A.1.1)
21 Jx pEZeroes(X)

This is a rather remarkable result: the left-hand-side computes topological information, whereas the
right-hand-side is a discrete sum. This raises the question whether or not in general there is something
to gain from fixed points (x € M such that Vg € G : ¢-x = x == h = ¢) of a symmetry group G

acting on M. This behavior already hints at the connection with supersymmetric localization, discussed
in ??.

So consider a group G acting on a smooth manifold M. If G has no fixed points, then the quotient
M/G is again a smooth manifold and we can define the equivariant cohomology of M to be just the
cohomology of M/G. However, the simple example of rotations around the z-axis on the 2-sphere shows
that this goes wrong in the most simple cases: in general M /G has singular points at fixed points of G.
How do we define the equivariant cohomology in this case? The answer is that we should use a space of
equivalent homotopy type (has isomorphic homotopy groups) that is canonically constructible from our
initial data G and M, on which G acts freely. For this, we will define the space M X EG, where G acts
freely on the contractible space EG. Note that we need EG to be contractible in order to preserve the
homotopy type in going from M to M X EG. Then the equivariant cohomology of M is defined by

HE(M) = H*((M x EG)/G) = H*(Mg), (A1.2)

where we modded out by the diagonal action of G on M x EG. So how do we construct EG? The
canonical way to define EG is by considering the universal bundle EG — BG, which has the property
that every principal G-bundle E — M is a pullback. More precisely, this means that for every principal
G-bundle E — M, there is a classifying map f : M — BG such that the bundle E — M is isomor-
phic to f*(EG — BG). BG is called the classifying space of G and one can show that it is uniquely
determined up to homotopy.

The most important example is that of the simplest case M = {pt}, the worst-case scenario, as G can
only act trivially on M. Then we see easily that pt; = (pt x EG)/G = EG/G = BG, where the last
equivalence holds since we only consider principal G-bundles here. Hence

H(pt) = H*(BG). (A1.3)

Let us give an explicit example of a classifying space: let S>"*1 be the unit sphere in C"1. Then we
can a define an S!-action on C"t1 by scalar multiplication, which is a free action; let exp(iG) esloe
[0,277), then (z',...,2") € C" — exp(if)(z},...,2") = (z},...,2") <= 0 = 0. The quotient
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space is CP" by definition. Since we want a contractible space, we need to consider the infinite union
S® = U®_,S?"t1 and CP® = U ,CP", which are contractible*. Applying the statement from the
previous paragraph, we get that the bundle

§® — CP*® (A.1.4)
is a universal S!-bundle and up to homotopy equivalence, CP* is equal to BS.

Now we recall from algebraic topology that ’taking cohomology’ H®() is a contravariant functor. Hence,
the constant map M — pt induces a ring homomorphism H®(pt) — H*®(M). Hence, H*(M) gets
the structure of a module over the ring H®(pt): it is a vector space with coefficients in H®(pt), for any M.

Specializing to the previous S! action, the coefficient ring becomes
Hg (pt,R) = H*(ptg1,R) = H*(BS",R) = H*(CP™,R) = R[u] (A.15)

where 1 is a generator of the cohomology H®*(CP®,R) of degree 2 associated to CP" in the cell decom-
position of CP® = CPlUCP2UCP3U.. itis just the Poincaré dual, a real 2-form, to CpL.

From this we learn that the coefficient ring in the case of the S'-action consists of polynomials in u.

So far, our considerations were a bit abstract, but in fact, there is a more computational way of describing
equivariant cohomology: namely using the language of equivariant differential forms: these are the forms
w that satisfy Léw = w for all ¢ € G, where Lg denotes left multiplication. Such forms are determined
by their value at the identity e € G, so left-invariant forms constitue a finite-dimensional vector space
A°®(g®): the exterior algebra generated by g°, the dual to g. This space inherits a differential operator d
from Q*(G), upon which we can interpret it as a differential complex (3*(g*®). For compact* connected
G, this descends to an isomorphism on cohomology: H®*(Q*(g®)) = H*(Q*(G)) = H*(G). Itis clear
by the connectedness of G and homotopy invariance of de Rham cohomology, that Lg acts trivially in
H*(G): every class in H*(G) is left-invariant.

What do we learn from this? The cohomology of a compact connected Lie group G is exactly determined
by an infinitesimal description, namely it is determined in terms of the structure constants of g. Explicitly,
if we have a basis {e;} for g with [e;, ¢;] = Cl-]-kek then the dual base {6'} satisfying 6" (¢;) = (5;- generates
(*(g) and by the identity

1. .
! —_— l‘ ] k pr—
ae’ + zc]kf) 0*=0 (A.1.6)
describes it completely.

So let us describe equivariant cohomology from this infinitesimal point of view. Let X € g, then we have
the Lie derivative in the direction of X, which satisfies

Ly =dix +ixd = (d +1x)* = Dj. (A.1.7)

Any g invariant form will be annihilated by Lx and it is only such forms that we want to consider. We
will call such forms basic forms.

Consider the space W(g) = A®(g®) ® Sym(g*®). Here Sym(g®) is the symmetric tensor algebra on g*
that contains symmetric tensors like %(v ® w+ w ® v). It is crucial observation that this space should
be regarded as the space of polynomials on g°: they are expressions that provide a map g — R that

*This is implied by the vanishing of all homotopy groups of S®. One can argue for this as follows: note that S¥ is compact,
so the image of any continuous map S¥ — S® will be contained in some $%"*1 for some n. If 1 is large enough, any such map
will be homotopic to the identity. Since we constructed S®° as a union of spheres $*"*', all homotopy groups vanish, hence it is
contractible. This descends automatically to the quotient CP"

*Compactness is crucial, since in that case we can average forms over G, which projects (*(G) to Q°®(g®)



A.1 A note on equivariant cohomology 102

moreover consists of elements with a discrete grading.

The generators of W(g) are then given by ', the generators of A®(g®) and u' = 1® 6, the generators
of Sym(g®). This space can be interpreted as a complex when we equip it with the exterior derivative dyy
defined by

dwb' = de; + Ecljkefe’f =, dwu' =du'+ 0k =0, (A.1.8)
So what are the invariant forms that we want to consider here? Since we have
teiﬂj = 5{, tgiuj =0, (A.1.9)

we see immediately that in fact the invariant forms that we want only contain u’s, that is, the invariant
forms are polynomials in u.

Consider now the following complex
O&(M) = ((W(g) ® Q°(M)), Dy), (A.1.10)
which is called the twisted de Rham complex. Then the key result by Cartan is that
H(M,C) = H*(Qg (M), Dy). (A.1.11)

This description of equivariant cohomology is called the Cartan model. 1t can be shown that the con-
straint txw = 0 eliminates all terms with 6, and one can also just use

(M) = ((Sym(g*) ® Q*(M)), Dy), (A.1.12)
where the differential Dy is given by

Dou' =0, Dow = dw — te;wii;. (A.1.13)

Example

Consider G = S, then W(g) = IR[6, u] is the exterior algebra with a single generator 0 and a polynomial
algebra in the element u of degree 2. Then an element in QO (M) will be of the form

w = wg+ 0wy, (A.1.14)

where the w; are polynomials in 1 with coefficients in Q)*(M). Now g will have 1 basis element, denoted
by X, so that 1x0 = 1. Then w will be basic iff

ixw =0, Lxw = 0. (A.1.15)
The first condition is
tx(wo + Bwr) = ixwo + (1x0)wy — Oixwi =0, (A.1.16)
so separating contributions of different degrees we have
ixwo + (1x0)w1 =0, Pixwy = 0. (A.1.17)

Note that l%( = 0, so the first equation implies the second, and we are left with the characterization
w1 = —ixwop. The subspace generated by such forms is called the basic subcomplex.

Consider now the general case: a closed form in Q;l (M) in the Cartan model is represented by a poly-
nomial in u, whose coefficients are X-invariant forms w; € Qx (M), denoted by

w=wpy+uwy +...+u"wy (A.1.18)
where n = dim M, satisfying Dow = 0, which in terms of the coefficients wj is

dwy =0, dwi = i1xwy, dwy = i1xwy, dwy = 1xwy,_1. (A.1.19)
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Rotation on the 2-sphere.
As an example, let us return to the earlier case of rotations around the z-axis on 52 The form

o~ L xdydz —ydxdz + zdxdy (A.1.20)

AT (2442 4 22)%2

is defined on R3 — {0} and restricts to the normalized volume form on 52 where x2 + y2 +22=1.The
vector field that generates rotations around the z-axis is X = 27 (xay — yax). Restricted to S2, we use

the constraint (??) to get on S?

_ Zj 2 21, _ _ 1 2 2 _
xw =7 (x dz +y*dz — xzdx yzdy) =5 ((x +y7)dz Z(xdx+]/dy))
1

_1 ((x2 + yz)dz) + %zzdz ~5

3 (z(xdx + ydy) — zzdz) _1 (dz — z(xdx + ydy + zdz)) .

2

But the second term xdx + ydy + zdz = 0 on S2, this follows by taking the exterior derivative of the
defining equation for the 2-sphere:

d(x%+y2+zz) =d(1) =0 = xdx+ydy+zdz =0. (A.1.21)
So we have ixw = %, on S2. We see that the Hamiltonian is given by % and an equivariant class in

H§1 (S?) is given by w + 5u. Note that u is a generator for the symmetric tensor algebra Sym((T.S!)*) =
Sym(IR*) = Sym(R).

A.2 The moment map

Looking at the case n = 1 in particular, an equivariant class in H§1 (M) can be written as
w=cw +u-H (A.2.1)
where ' is an invariant form on M and H is a function such that
ixw = dH. (A.2.2)

This equation leads to a moment map p. Suppose M is a symplectic manifold with some symplectic
form Q). In this case, equation (A.2.2) can be inverted: given any H € QY(M), there is a unique vector
field Xy such that 1x, () = dH. Xy is the Hamiltonian flow generated by H. Conversely, if we have
an S'-action generated by X that preserves the symplectic form, LxQ) = 0, then this S'-action is said
to admit a moment map precisely if there is a function H satisfying (A.2.2). This extends to the case of
general compact connected Lie groups G. It remains to explain what the moment map is.

In general, if a G-action preserves (), the function H is determined by a moment map y : M — g*,
such that for all vectors { € g and x € M we have Hg(x) = (i(x),&). The defining equation for the
moment map then becomes

lXH’:Q =dHz = d(u, ), Ve € g. (A.2.3)

When this condition holds, we say that G-action is Hamiltonian. Note that from the defining equation
for the moment map, it is clear that the space #~1(0) is a G-invariant subspace of M. If 0 is a regular
value of #, it follows that ~1(0) is a manifold and if G acts freely and properly on it, u=1(0)/G is
also a manifold. We mention that when we start out with a Hamiltonian H and ¢ is the vectorfield Xy
generated by H, we have the tautological notation Hy,, = H.

Rotations in R3. Consider the phase space of classical mechanics on R3, which is equal to T*R3. With
coordinates (X1, X2, X3,Y1,Y2,Y3) on T*R3 we have the symplectic form w = dx; A dy;,i = 1,2,3.
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Suppose G = SO(3). Then an element in g generates the vectorfield X = aijxiaiy where a;; = —aj;. The
Lie-derivative is

ﬁxdx]* = d(ﬁxx]) = d(aijxi) = aijdxi. (A.2.4)

We want that Lxw = 0, so we deduce that the right vectorfield X¢ is given by

0 d
Xe=aji | Xiz=— +Yiz=— (A.2.5)
¢ ij ( lax]' y’&w)
since
,ngw = Exg (dxi N d]/l) = (,ngdx,«) Ady; +dx; A (ACng]/i) (A.2.6)
= agdxi AN dy; +dx; A\ agdyx = (ag; + ag)dxg Ady; = 0. (A.2.7)

From this, we compute

1xw = aj (xidyj — yidx;) = aj (xidy; +yidx;) = agd(xy;) = ) ayd(xy; —yixj),  (A28)

i<j
from which we see that the moment map is given by
w(xiyi) = €ijkxjyk‘ (A.2.9)

This is familiar: the moment is equal to the angular momentum and it is conserved because R® admits
rotational symmetry under G = SO(3).

A.3 Symplectic and complex geometry

Symplectic geometry

Given M an 2n-manifold, a symplectic form is a closed, non-degenerate 2-form w. Non-degeneracy
means that Vp € M if VY € TyM : w(X,Y) = 0 = X = 0. Since antisymmetric forms are
not invertible in odd dimension, M should be even-dimensional. One can always find local coordinates,
called the Darboux basis, such that w is in the standard form

0 I
(5. e

Given a vector subspace W C V, one can define the subspace perpendicular to W in V with respect to
w, namely

Wt={veV | wwo)=0, Ywec W}. (A3.2)

Note that W N W does not necessarily vanish. This gives rise to the following nomenclature: if W C
WL, W is isotropic. If W- C W, W is co-isotropic. If W = W, W is Lagrangian.
Complex geometry

An almost complex structure | on M" is a automorphism of the tangent space | : T,M — T, M that
squares to —1: J2 = —1. Note that locally, we always have a canonical form for

0 -1
and that we can always patch together such pointwise defined almost complex structures. Also note
that necessarily we need the dimension of M to be even. We call M" equipped with an almost complex
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structure | an almost complex manifold. Especially, almost complex manifolds are always orientable.

An almost complex structure | on M?" enables us to at least pointwise define a notion of complex co-
ordinates: note that the eigenvalues of | are &i. If (x;,1;)i—1. are local coordinates on M?" we may
pairwise define complex coordinates as z; = x; + iy;. Multiplication by i on z, z + iz then translates
into (x1,Y1,---,%n,Yn)" = J(x1,Y1, -, %n,yn)". Note that ] is an isometry with respect to the metric
of M: g(JX,JY) = g(X,Y).

Note that an almost complex structure does not automatically allow one to define local coordinate patches
with holomorphic z' and antiholomorphic Z' coordinates around every point p € M. If M has holomor-
phic coordinate charts around every point, they will patch together into a holomorphic atlas that induces
the almost complex structure J, | is then said to be integrable and M" then is a complex manifold. We
note that for surfaces, being an almost complex manifold is equivalent to being a complex manifold.

By the Newlander-Nirenberg theorem, [ is integrable iff the Nijenhuis-tensor Ny of | vanishes on every
pair of vectors X, Y:

Ny (X, Y) = [X, Y]+ ][X, JY]+ X, Y] - [JX,]JY] =0, (A.3.3)
which in index notation reads
NE =t (0 — o) — 1} (auk = aglf) (A34)

Moreover, we can introduce, analogous to the real case, basis elements for the tangent and cotangent
space. Elements of the latter are then called (p, q)-form, if they contain p holomorphic forms and g
anti-holomorphic forms.

Kahler structure

On a complex manifold M we can put at every point a hermitian metric: a positive-definite inner product
g : TM®TM — C. In index notation, the non-zero are exactly 8ij and we write g = gi;dzidff.
This makes 8ij into a hermitian matrix. Using the metric, we can define the associated Kdhler form: a

(1,1)-form w that is locally given by w = igijdzi A dZl. More intrinsically, we have
w(X,Y)=g(X,Y).

This condition says that (g, w, J) is a compatible triple. Note that for holomorphic vectors X, [X = iX.
We then say that the metric is Kdhler if dw = dw + dw = 0, and we say that M is Kihler. Closedness
of the Kahler form implies that

KNSij = %8k %8&ii = I8k (A3.5)

From this we learn that locally, the metric can be written as 8ij = BiBJT(ID, where @ is the Kahler potential.
It follows straightforwardly that the only nonzero entries of the Levi-Civita connection are

i

i _ 19 _ 9
k=8 5 k8 ij = BZEglj (A.3.6)
and the curvature tensor has nonvanishing components

R = —8mj gr% Rig = —Rgq = Ry = Rygip (A3.7)

We see that on Kahler manifolds the Levi-Civita connection has pure indices: non-zero elements have
only holomorphic of anti-holomorphic indices, the consequence is that holomorphic vectors remain holo-

morphic under parallel transport. Therefore, on a n complex dimensional complex manifold, the holonomy
on a Kahler manifold sits in U(n). The Laplacian satisfies A = dé + dd = 2A5 = 2A5 and so harmonic
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forms are harmonic for all operators.

The simplest example is the complex plane C", whose Kahler potential is given by the norm zZ'. As
another example, on complex projective space CIP!, the Kihler potential is given by log(zz). A special
and more intricate example is one of the two unique complex Kahler surfaces: the K3 surface, the other
one being the complex torus T*.

Calabi-Yau manifolds

Calabi-Yau manifolds are n-complex dimensional complex manifold that have holonomy in SU(11). There
are many equivalent ways to characterize them: they are Ricci-flat, have a non-vanishing maximal holo-
morphic (n,0)-form, have vanishing first Chern-class and are Kahler since SU(n) C U(n). By Yau’s
theorem, a Kéhler manifold with vanishing first real Chern class always admits a Ricci-flat Kéhler met-
ric. In 1 complex dimension, there is only the torus. In 2 complex dimensions, the only compact simply-
connected Calabi-Yau manifolds are the K3-surfaces. There are also many non-compact examples. In
complex dimension 3, the number of Calabi-Yau manifolds is bewildering large, which underpins the
string theory landscape problem, since any Calabi-Yau 3-fold furnishes a possible superstring compacti-
fication. A concrete example is the quintic 3-fold, which is described as the codimension 1 hypersurface
Y21 (X3 = 0 where the X' are homogeneous coordinates on CP%.

Hyperkéahler structure

By definition, a hyperkahler manifold M has dimension 4k with k a positive integer, whose holonomy is
contained in Sp(k): the symplectic group Sp(k) consists of matrices that preserve the hermitian metric
(x,y) = X;y' on CF. Such manifolds have the following distinguishing feature: they posses an $%-
space of complex structures. This means that there are three complex structures I, J, K on TM, that
possess a quaternionic structure, that is I] = —JI,IJK = —1. If (a,b,c) € S?, it is easy to check
that al + b] + cK then again squares to —1, and so is a complex structure (integrability follows from
integrability from I, ], K). By definition, since Sp(k) C SU(4k), such manifolds are Calabi-Yau.

Examples of these spaces: by Kodaira’s classification, for k = 1 there is only T# or the K3-surface. For
higher k, a notable example are the asymptotically locally Euclidean (ALE) spaces. Since SU(2) = Sp(1),
any Calabi-Yau surface is hyperkahler and vice versa.

A.4 Category theory and topological field theory

So far we have seen a description of topological field theory using the tools of (supersymmetric) quan-
tum field theory, which unavoidably includes the use of the path integral formulation. However, only in
a few special cases the path integral integration measure (e.g. D¢) can be given a rigorous mathematical
description. To circumvent this problem one can try to give a purely axiomatic description of quantum
field theory. This amounts to giving a categorical description in which a given quantum field theory
should be viewed as an abstract map with functorial properties. Topological field theory is most easily
amenable to such an abstract description, due to its virtue of being insensitive to the local properties of
the spacetime it is defined on, making it possible to axiomatize its properties under surgery, cutting and
gluing procedures (it is less clear to what ordinary QFT can be understood in this fashion). This abstract,
formal, characterization of field theory will be useful when discussing topological Chern-Simons theory
and mirror symmetry.

The main framework needed is category theory which provides a general way of looking at structure
in mathematics.* A category C contains a collection ob(C) of objects, a collection hom(C) of arrows
between objects, which we call morphisms, and the binary operation o which is the composition of mor-
phisms. The operation o satisfies a number of elementary properties: the existence of an identity and
associativity. An example is the category SETs which contains all possible sets as its objects. For these,

*The use of category theory is motivated for instance by realizing that the notion of the set that contains all possible sets is an
intrinsically ill-defined concept.
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the morphisms are just maps between sets. We can also consider all sets with the structure of a dif-
ferentiable or smooth manifold, to get the category of smooth manifolds DiFr. Then the morphisms are
diffeomorphisms between manifolds.

Since a category can be seen as an object in itself, we can look for a map between categories that pre-
serves the structure contained within them: such maps should preserve associativity and the identity. We
call such maps functors, which come in two flavors: covariant functors preserve the direction of arrows,
while contravariant functors reverse the direction of arrows.

Going back to the category DIFF, a particularly nice example of a functor is the tangent functor 7. For
suppose we have a diffeomorphism f : M — N between smooth manifolds, T acts as

{f:M— N} =% {Df : TM — TN}. (A4.1)

In this way, we see that T is a covariant functor between the categories DiFr and VECT, the category of
vector spaces.*

Cutting and pasting

In this abstract sense, an n-dimensional topological field theory should be seen as a functor TFT,. What
does this have to do with physics? Any field theory is defined on a manifold M of dimension n which we
think of as space-time. In general, if M has a nonempty boundary which might consist of several disjoint
components, we may view it as a cobordism between two surfaces 21 and Xp. We may view a cobordism
between two d-dimensional manifolds £1,Z; by definition as some d + 1-dimensional manifold whose
boundary dM consists of the disjoint union 27 UX,. If M has no boundary, we can think of M as a cobor-
dism between two empty manifolds, two empty sets. Moreover, we can glue two manifolds M, N with
boundaries OM = Y1 U X5 and N = X U X to each other if they have an identical boundary up to a
diffeomorphism y : ¥ — X}. We can then view the glued product as a new cobordism M’ = M Uy N
with boundary ¥ U XJ. Note that ‘gluing’ corresponds to the composition o of morphisms in DIFF.

From now on, let M, N be two n-dimensional manifolds. In categorical language, we would like to think
of the cobordism M as a morphism f between two objects that are assigned to its two codimension 1
boundaries 21,%,. Hence it is clear what TFT,, should do. TFT,, should be a functor that makes the
above assignments and should be compatible with the gluing of corbordisms. Moreover, the most natural
thing a topological field theory does is computing a partition function Z(M), which as we have seen,
should only depend on the topology of M. Hence, we want TFT,, to assign a number to a closed manifold.

We therefore postulate the following behavior: TFT,; assigns to the object 'n — 1-dimensional manifold
(=1 another object ’a vector space 'H(Z(”fl))’, and assigns to a n-dimensional manifold with bound-
aries X1, %Xy a morphism f : H(X1) — H(X,). If ¥ is empty, then TFT, assigns to it the ring over
which the vector spaces H are defined, which we just take to be C here.
Compatibility with gluing means the following. If TFT, acts as

e TFT,(X) = H(X) where X is any (n — 1)-dimensional boundary

o TFT,(M) = f where f : H(Z1) — H(X2)

o TFT,(N) = g where g : H(X]) — H(X))
and we can glue M to N; i.e. we have a diffeomorphism y : £, — X/, then we should have

TFT,(M Uy N) = TFT,(N) o/ TFT,(M) = go' f (A.4.2)

where o’ denotes composition for the morphisms between the vector spaces H: in this case, this is just
composition of linear maps.

*Of course, one can continue in this fashion and consider morphisms between morphisms (bimorphisms), morphisms between
bimorphisms and so on, leading to higher levels of structure such as n-categories and n-functors. A discussion of these topics is
outside the scope of this text.
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Figure 14: Surgery on manifolds.

So TFT, assigns to a closed manifold M, which corresponds to a cobordism @ — @, a morphism
f : € — C. This is a linear map between two copies of C, but that is just an element of C. We interpret
this number as the partition function Z(M).

Cutting a closed manifold M in two pieces: M = M_ U M., splits the cobordism @ — @ into two
composite cobordisms @ — X_ and X — @&, where X is Z_ with the opposite orientation. Then
we have

M- r iCc— H(E) (A4.3)
M. f  H(EL) —C (A4.4)
M_UM, 8 f o'f,:C—C (A4.5)

The map f_ is a linear map from C to a vector space H (X_), hence we can view f_ as a vector itself in
H(X_). Likewise, f is a linear functional, a covector in H* (X4 ). By gluing, we have that fi o f_ :
C — C is an element C. We want to think of this element as (f, f—) = f4(f-). Hence we see that
TFT,(M_) = f- = |[M_) € H(X_), so for consistency with gluing TFT, should assign an element
f+ = (M| in the dual Hilbert space H* (X4 ) which is isomorphic to H*(X_).

With the natural bilinear pairing H*(X_) x H(X_) — C, we see that this assignment then is com-
pletely compatible with the composition of arrows and the behavior of TFT,,, i.e. we have (M4 |M_) =
Z(M).

So why should TFT,, assign a Hilbert space to a boundary of M? Consider the path integral formulation
of quantum mechanics where x(t) € R" is the trajectory of some quantum mechanical particle, where
t € R. Then the path integral amplitude for a particle to travel between two points x4, xp is

= Dx(t i | dtL | . A.4.6
ot = [ r(o)exp (i fart (A46

Especially, we can look at the special case that t; = —co,f = 00, whose amplitude we can compute as
follows: calculate the amplitude for the particle moving from x(—c0) = x 4 to some fixed x(0) = xo, and
calculate the amplitude for the particle moving from x( to x(c0) = xp. Then we obtain two amplitudes,
which when multiplied and integrated over the position xg will give the full amplitude

(rslxa) = [ dxolees|xo) (ol )

= /n dx /x(foo):xA,x(O):xo Dx(t) exp <i/dtL) X ~/JC/(0):XO,X/(OO):XB Dx'(t) exp <i/dtL>

Now we can interpret the position at £ = 0 as a boundary: the amplitude (xg|xp) as a function of the
boundary condition x(0) = x( can be thought of as representing a state in a Hilbert space, which in this
case is equal to R2. These arguments extend to field theory in a similar fashion: for instance, there the
Hilbert space could be the space of all values a field can take at a certain space-time position.
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COUPLING TO THE B --BRANE

We start from the bosonic part of (6.1.13), which differs from the A-model action by a Bogomolny term.
The bosonic kinetic term expands as:

Ya AsYA = gup (dgA A #dEB — dEA A 2IBAEC — +IAAEC A +dEB + xIAdEC A *21};ng)

= gAB (dg A *dEB + dEA A 1BAEC — TAAEC A dEB — «1AdEC A Igng)
= 9AB <a€Ad + agAdt) (853 dt — S ds)

P} ot P} ot
g4 ag p ((95C e
gAB<a ds + = dt)AIC<a ds + ~—dt

C C B B
_ A (9 9 ¢ 9
gABIC ( 9 ds + of dt) < 9s ds + ot ——dt

C C D D
— gapld (ag dt — aaitd ) ANIB (ag ds+ % dt)
_ agA agB a(;:A a(;:B aécA écB

—(g (asas+znen>+2’wa at)“A“

where we used gABIgID = —gcp and Iﬁl = gACwCB. Inserting an overall paramter 2t as in chapter 3,
the action then becomes

A B A B A B
top _ ¢hog” | 9g” 9 / dg” 9g” ,
I," =2t (/ dsdtgap < % s + 5 of +2 | dsdtwap—=— % of + fermions. (B.0.1)

We recognize the first term as kinetic term for the A-model in real coordinates, while the second term
becomes with w4p = dacgp — dgca (note that d4 = aﬁjiA):

A xB A yxB A 3xB A xB
/ dsdt aACBii — E)B CA—=— g ag = / dsdt 8A03££ — aB CA—=— C aC
D ds D ds ot

ds Ot ot Jds ot
B dcp OB acp o
QWQaM%
B o ( aB\ 9 [ ogh 39\
= /Ddsdtg (CB EY: > ( ) / dsdtCB( 57 — atas) C
:/ cpde® = .
D

which is just the Morse function we used. Let us look at the second exponential: it reads

exp (i 7{ A Ad§A> — exp (h +i 7€ . bAdgA> . (B.0.2)

Therefore, we see that the bosonic part of the integrand is

p) Aa B P} Aa B ) N
exp ( 2t (/ dsdtgap ( i ai + ii) —|—zy§D bAd(;‘A)> gui(ti)Oy(O). (B.0.3)

The first term in the exponential is the standard o-model kinetic term, but the second one comes from
the term [ p;dq' from the original path integral (6.1.1) we started out with. In the A-model, this factor
should be interpreted as a boundary coupling of the A-model to the topological A-brane B,.
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SUPERSYMMETRY, GEOMETRY AND VACUA

In this chapter we show how Morse theory can be applied to analyze (supersymmetric) c-models. Morse
theory is a classic tool in differential geometry which can be used to study the topology of a manifold
by studying scalar functions on M. An identification is that Morse theory flow lines correspond exactly
to instantons in the quantum theory, that represent particles tunneling between classical vacua. Such
instantons lift the energy of classical vacua, and this lifting is exactly captured by the Morse-Smale-
Witten complex, which is defined on the critical points on M. This illustrates the intimate relation
between geometry, analysis and physics. The material discussed here will mainly be used in chapter 8,
where we use it to describe Khovanov homology. A reference for this material is [7].

C.1 Morse inequalities and Morse-Smale-Witten complex

Morse-Smale-Witten complex

The collection of all sets Cy of critical points of Morse index k form a (co)homological complex, with a
boundary operator d : C; — Cy_1 that counts how many downward flow lines there are from Morse
index k to k — 1. Alternatively, one can define a coboundary operator ¢ that counts upward flow lines
from Morse index k to k 4 1. If the Morse-Smale condition holds, this coboundary operator exists and the
cohomological complex is called the Morse-Smale-Witten complex. The construction of these operators is
analogous to instanton calculations, which we shall discuss below. One can show that the dimension of
the space of flow lines between two points exactly equals their difference p — g in Morse index. Modding
out by reparametrization invariance, the moduli space M(p,q) has dimension p — g — 1, and has a
natural compactification M (p, q). For points differing 1 in Morse index, M (p, p — 1) is a collection of
signed points, and the coboundary operator acts precisely as dp = Yu(p)-1 #M(p,q)q. The intuitive
reason for nilpotency 9> = 0 is that a downward flow from a point with Morse index p to Morse
index p — 2 always limits to a broken flow, a flow that interpolates between two consecutive points that
pairwise differ 1 in Morse index. Hence the O-dimensional moduli space of broken flows constitutes a
boundary for the 1-dimensional space M (p, p — 2), and also on the boundary of M(p, p — 2), which is

compact and oriented. But in that case, all the signs have to cancel. Hence 9> = 0.

Morse inequalities

An important result of Morse theory is the weak Morse inequality
b < Ni (C.1.1)

between the Betti numbers by = dim H*(M) and the number Ny of critical points of Morse index k.
One also has the strong Morse inequality

n n

Y (Ne—b)t = (1+6) Y ", Q>0 (C.1.2)
k=0 k=0
Inserting t = —1, we find that

n

Y (C1Ne = 30 (< 1)k = x(M). €13

k=0 k=0

It turns out that the validity of these Morse inequalities is equivalent to the existence of the Witten
complex, which we will describe in the coming section.
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The height function on X

Let us consider an example in 2 dimensions. Take a Riemann surface ¥¢ of genus ¢ and posi-
tion it such that all holes are aligned vertically. As our Morse function, we can take a linear
height function (a gravitational potential) on ¥, which is clearly a Morse function on .
Then there are 2 critical points, 1 at the top and 1 at the bottom, and 2g saddlepoints. The
Morse index of the upper critical points is 2 (it has 2 unstable directions) and that of the
lower is 0. Every saddlepoint has Morse index 1. Then according to the identity (C.1.3) we
have

2
x(M) =Y (-1)'Ny=1-2¢g+1=2-2g, (C.1.4)
k=0

which is the familiar result. More importantly, consider a smooth deformation of %o at the
top, visualizable by pushing into the surface with your thumb and making a dent. Then we
create one additional local minimum and one saddlepoint, which changes My = 1,0M; =
1,6M; = 0, such that the Euler characteristic is unchanged, as we expect from the topological
nature of x(M). It is straightforward to extend this to any smooth deformation.

OO OO
OO OO

(a) The 2¢ + 2 critical points of the  (b) A deformation of ¥¢ and the extra
height function on Xg. critical points.

C.2 Supersymmetric ground states

Now follows our first application of Morse theory to the supersymmetric c-model: we shall see how
Morse theory precisely captures the space of supersymmetric ground states. The reference for this is [8].

Counting classical ground states

The identification (??) between geometrical objects (differential forms) and physical fields allows for a
more physical proof of the Morse inequalities, as was first shown by Witten [8]. To analyze the behavior
around a critical point, we rescale the superpotential i — Ah. This is equivalent to a deformation of the
exterior derivative and its adjoint:

dy = e MdeM = 4+ W’%, 4y = eMdre ™M = g 4 Ay %. (C.2.1)

*

It is immediate that dg\ = 0, since we are conjugating by e*".* Therefore the cohomology of d, is
equivalent to that of d. Associated to this is the modified Betti number b;(M, A):

by(M, A) = dim (ker(d d +dydy) N QP (M)) (C.2.2)

*Explicitly d3 = (eM'de=M) (eMde=?) = eMig2e=A = 0
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which is the number of independent p-forms with respect to the modified differential d,. The modified
Betti number will depend continuously on A, but it values are discrete.
Hence, we can freely choose a value of A to find by (M) = b;(M,0) and can study the cohomology of d,,
the vacua of the modified Hamiltonian H)y = %(d,\df\ +dj3dy) in the limit A — oo. It is straightforward
to check that the modified Hamiltonian becomes:
i; oh oh i
2H) = (dd* + d* 2ol — — + A[¢', ¢/|D;Djh.
A (dd +dd)+/\g axlax]+ [lzb/llj] i ]h

From the form of the Hamiltonian, we see that low-energy states lie near the critical points of the
quadratic potential term. As A — oo, these minima becomes localized at exactly the critical points.

When we expand around a critical point, we can always choose locally flat coordinates (a result from
Riemannian geometry) such that g;; = 6;; + O(x?), so the Christoffel symbols T/ vanish to O(x) and
h(x) = h(0) + ¢;x? + O(x3). Note that the number of negative c; is exactly the Morse index (p) at
the critical point. Hence we get the following expansion up to O(x3):

2 .
2H, =) (_a + A2c2x? + Aci[¢, gbi]) (C.2.3)

2
; 0x;
which is the Hamiltonian of a n-dimensional harmonic oscillator with a correction term
[, '] = +1. (C.2.4)

Here the commutator is +1 wheni € {iy,..., iﬂ(p)} and —1 otherwise. Since the first two terms and the
commutator-term commute, we can simultaneously diagonalize them. We note that the first two terms
are the standard ones for harmonic oscillators, hence we can immediately deduce the spectrum of the
Hamiltonian as

1
Ex=3AY (lel(1+2N) +em) + O(°),  mi==£1, N €N. (C.2.5)
;

Now this will only give E, = 0 when N; = 0 for all i and if n; = —sign c;. We have exactly u(p)
indices for which n1; = 41 from equation (C.2.4) and the defining property of the Morse index, hence the
eigenfunction for a ground state with zero energy is a j(p)-form. We see that in the classical description,
each critical point gives a suitable ground-state wave function ‘*I’? whose energy vanishes to order A%; we

see that we have N,y such ground-states in OHP)(M). The exact form of ‘I’? can be found by explicitly
solving Q‘I’? = Q‘I’? = 0, an example of which can be found in [7].

It turns out that this states remain in the classical spectrum up to all order in perturbation theory. A
conceptual way to understand this is that perturbation theory is a local calculation: it is blind to the
topology of M. The existence of a critical point and ‘Y? however, is a topological issue. Therefore, per-
turbation theory cannot remove classical ground states, only non-local calculations of tunneling effects
or instantons, can remove classical ground states from the ground state spectrum. Recall that classical
ground states equal harmonic forms, whose number is coupled to the topology of M: this is compatible
with our remarks above.

A physical proof of the weak Morse inequality (C.1.1) now easily follows: the number by of nonpertur-
bative ground states (those states with exactly zero energy) is always smaller of equal the number Nj of
ground states in first order perturbation theory. This simply implies the weak Morse inequality: by < Nj.
This observation was first made by Witten [8].

So we conclude that if the Morse function h has non-degenerate critical points, classically every critical
points contributes 1 state to the cohomology of M in the perturbative description.t’

t A systematic treatment with degenerate critical points can be found in [8].
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Consider the height function /i on the sphere ¥y. Undeformed, i has two critical points,
which correspond to two non-perturbative vacua, one 0-form and one 2-form, considering the
Morse indices at the north and south pole. If we deform the sphere such that it gets two
maxima and one saddle-point, ki will have four critical points, giving 4 classical ground states:
two 2-forms, one 1-form and one O-form. However, the space of quantum ground states has
to be a topological invariant: this indicates that some classical ground states will actually be
lifted by instanton effects. Since in the undeformed case, both ground states are bosons, they
cannot be lifted by instantons (also, they do not differ 1 in Morse index). Therefore, they are
quantum ground states, and two states in the deformed case must be lifted.

(c) Morse flow on a sphere. (d) Morse flow on a deformed sphere.

Instanton lifting of supersymmetric vacua in SQM

We want to illustrate by an explicit calculation how instantons can lift supersymmetric vacua in super-
symmetric quantum mechanics, where we recall that supersymmetric vacua have Q|0) = Q|0) = 0.
We simplify the situation somewhat by taking a 1-dimensional target space, such that we have a 1-
dimensional o-model with @ : IR — IR. Consider now the situation that V has two minima, with asso-
ciated semi-classical ground states |1),|2), one bosonic and one fermionic state, whose exact (quantum)
lowest-energy states are |0+ ). Semi-classically, |1), |2) do not mix, since (1|H|2) = 0 by conservation of
fermion number. However, quantum effects can lift this ground state degeneracy. Their common energy
is given by

Eo = {04 HI0-) = (0-[H|0-) = 2(0+|{QQ} 104) = 5 (0+1QQI0+) = ¥ 5(0+QIK) (KIQ0-).

k=%

N —

By conservation of fermion number again, this last sum reduces to Eg = %|(O_ |Q|04)|2. Our goal is to

calculate the supersymmetry breaking order parameter € = 1/2Ey = (0_|Q|0). This matrix element is
calculated in Euclidean time by the path integral

ﬁ(_::j Dp(t)DYDPexp (=5/m) Qlto) = tim (1] MI2HIQ()e T2 710]2)
= e T/7(1]0.) (04Q[0-)(0-[2)
(0+]QJ0-) =e. (C.2.6)

%

where we used that (x|i) = J(x — x;) and dropped the exponential since to lowest order Eg = 0. In
leading terms in 71 (so we may set % [, ] = P, so the Euclidean version of the Lagrangian (??) is

1. 1 —. —
L = 5¢" + 5 (W) = 9§ — W'y (€27)
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Here we denoted derivatives with respect to the target space coordinate ¢ by primes. First we need to
find the saddle-point contribution to the path integral. This is given by solving for a zero-energy classical
solution. So the Euclidean Hamiltonian %4)2 — %h’z = 0, so we infer ¢ = £h’. Taking the +-solution,
this implies by differentiation to time the classical equation of motion:

p—n'p=¢—nn" =0, P(-0)=¢1,  p(+) = ¢o. (C238)

We call the solution to this differential equation ¢ (t). After expanding quadratically around the classical
solution, one finds that the action becomes

1 _
S[ga(t)] + Squaa = Al + 3 / dt (59 Dydp + SFDEsY) , (C.2.9)
D= +HW"W + (h")* = (-9 —h")(3; — ") = DDy,  Dp=0; — h".

Localization implies that we can now evaluate the path integral (C.2.6) exactly in the quadratic approx-
imation, since the semi-classical approximation is exact. The presence of the Q insertion exactly kills
a fermionic zero mode. Moreover, there is a bosonic zero mode. Just as in chapter 3, these could be
calculated by an index formula, but in this case, the zero modes can be identified more easily. Namely

D = (3 — W)t = W — W'W = W) — W'H = 0. (C.2.10)

Hence ¢ has a zero mode 6§ = ﬁocf)d, where 7] is a Grassmann constant. Since Dg = D%, we see that
Dg has a zero mode 8¢ = € where € is any real constant. We note that Dpéyp = (9; + h")éyp = 0
has no solution, hence 1 has no zero mode. The bosonic zero mode comes from time translation invariance
and can be dealt with by integrating over all possible centers of time for the instanton. The path integral
for the quadratic part reduces to the ratio

det Dp
v/det Dg

where Al = h(x4) — h(x_) and the prefactor comes from the bosonic zero mode integration. The
instanton therefore clearly lifts the classical ground state from zero energy, breaking supersymmetry.

€ =exp (—Ah/h) = texp (—Ah/h), (C.2.11)

Counting quantum ground states

Morse theory captures the corrections to the spectrum due to instantons, in the form of the Morse-Witten
complex. This complex comes with a coboundary operator ¢ : X, — X, 11, defined by upward flow.
Here X, is the set of points of Morse index p:

élp) =Y n(p,q)lg). (C2.12)

g=p+1

Note that nilpotency of  implies that a pair of ground states associated to critical points can only have
their energies lifted by instantons when their Morse index differs by 1. The calculation of n(p, ) is just
the sum of all instanton contributions between |p) and |q), each instanton contributing a factor of +1
as in a rescaled version of (C.2.11).* To make this slightly more precise, consider the Landau-Ginzburg
model given by (??). Using the Bogomolny trick we rewrite the bosonic part of the action as:

1 oh oh o' .
i Pl — NG ij O
Sphys 5 /1 dt (/\gl]gbgb arpl 34’]) +... /dt ( ’ Tg 397 i/\h) +

: oh - o
—/Idt< ‘4>:Fg 59 )i)xh|+oo+...—5topi)\h|+m. (C.2.13)

*Geometrically, the number 11, = %1 is determined as follows. At every critical point A there is an associated state |a) which is
a p-form wy, 4, if the Morse index yi(A) = p. Then w), determines an orientation of the p-dimensional vector space V4 of negative
eigenvectors of the Hessian of the Morse function f at A. Likewise, there is a natural orientation of Vz at B. Now we can consider
a path <y that runs from A to B. If v is the tangent vector to 7y at A, we denote by Vj C V4 the subspace of V4 orthogonal to v

at A. Vj inherits an orientation from V4, defined by the p — 1-form obtained from interior multiplication with v: iyw, 4. Now
from the Morse flow from A to B, we get a map from VAL to Vp, which have both the same dimension p — 1, moreover, we induce
an orientation on Vp. The coefficient 71, is then +1 if the induced orientation corresponds to the orientation that is determined by
wp,p or —1if it is opposite.
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where the dots represent fermion terms. It is then immediately clear that as A — oo, only field configu-
rations that satisfy the flow equations

¢' = +g"0;h (C.2.14)

will contribute to correlation functions: instantons are such that h(¢(400)) > h(¢(—o0)), while anti-
instantons have hi(¢(+c0)) < h(¢(—o0)). Note that the second term kills either instantons or anti-
instantons as A — oo as they are suppressed exponentially by

exp (1) = exp (~A[h(¢(+09)) — h((—o9))]) = exp (~AAh;)

where Ah;; = h ;) —h 1)), where |p;),i = 1...N are ground states with Morse index
i o(p P(p; P u(p)

1(p;). Then, as in (C.2.6) with A = i1, we have the matrix elements

(pildalpj) = n(pi, pj) exp (=Syr) = n(pi, pj) exp (—AAhy;), (C.2.15)

where 1(p;, p;) is the signed number of instantons between p; and p;. With the normalization (p|p) =1,
(C.2.15) gives a coboundary operator:

dlay =dpla) = Qlay = ¥ n(a,b)exp (~Abhy) [b), (c2.16)
p(b)=p(a)+1

where in the first and second equation we used the identification (??) and (C.2.1) for the supercharge
Q and d, in the Landau-Ginzburg model. Note that this operator automatically obeys 62 = 0, since
d% = Q2 = 0. Moreover we have a selection rule: this matrix element is only non-zero when the degree
(in terms of forms) or fermion number between |p;) and |p;) differs by 1: the operator d) will absorb this
unit difference, since d, increases the fermion number by 1. Moreover, if p; has Morse index g and p;
has Morse index 4 + 1, then a necessary condition for a flow from p; to p; is that h(¢p,) < h(¢p,), since
the Morse function is strictly increasing along downward flows. By supersymmetry, there is one bosonic
zero-mode, which is the reparametrization invariance of the instanton.

By rescaling states |i) — exp (—A¢;) |i) we obtain our desired result (C.2.12). We see explicitly that
supersymmetry transformations tell us about the vacuum structure of supersymmetric quantum mechan-
ics. This picture generalizes to higher dimensions and theories with more supersymmetry, as we will see
in chapter 8.

Having established this, we can determine what the true quantum ground states are of the system: they
are the ground states associated to critical points that are not connected to critical points that differ by 1
in Morse index. Note that this implies that for a perfect Morse function, there is no instanton tunneling.
Moreover, this directly shows that the quantum ground states sit in the cohomology of the coboundary
operator 0: a quantum ground state obeys §|p) = 0 and |p) # J|q) for some g, since there is no tunneling
to |p). Dually, this space is captured by the homology groups of the dual to the Morse-Witten complex.

The deformed 2-sphere revisited

Consider the height function /i on the deformed 2-sphere with 4 critical points. Let’s label
the critical points |x), |y), |z1), |z2). Then there are two upward flows from |x) to |y), with

opposite orientations. Therefore, Q|x) = 0. There is one upward flow from y to z; and one
from y to zp: their orientations are opposite too, so we find that Qly) = |z1) — |z2). There
is no upward flow from zj 5, hence Q|z12) = 0. Hence, only |x) and a linear combination of

|z1) and |z;) are quantum ground states.

It turns out that the (co)homology of the Morse-Witten complex is actually independent of the choice of
Morse-Smale (I, ¢) on M. This is quite remarkable, but makes life easier by letting us pick our favorite
Morse-Smale pair to calculate with.
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C.3 Interpolation between critical points in Picard-Lefschetz theory

In chapter 4 and thereafter we assumed that there was no flow between critical points. Let us briefly
discuss when this might happen. We are only using holomorphic polynomials S, with i = Re §. If we
assume that we can pick a Kahler metric gl? on M, which will be the generic situation for us, then we can

write the downward flow equation in local complex coordinates (zi,z;):
dzi - oh 1 jo(S+8) _ de -98 dz! S

42 _ % s 8 il o ) ity C3.1
ds § ozl 2 oz ds 8 ozl ds 8 oz/ ( )

Here S denotes the complex conjugate and we denoted by gi} = Zgij the metric without a factor of %
absorbed. From this we find that

ds  2i ds 2i

dmS _1d(S-5) 1 (as5dd a5de\ _1( a5 ;35 95 ;05
- 0218 92 T 9z o2

R IRt .>_0. (C.3.2)

So along a flow, Im S is conserved. Moreover, we already saw that Re S strictly decreases along a non-
trivial flow. Hence we see that for two critical points p, g to be connected by a nontrivial flow line, we
need that Im S(p) = Im S(g) and Re S(p) # Re S(g). We shall mainly use the negative result in our
applications: we do not want or need flows between critical points in the hereafter. It is clear that this
is not too simplifying: for generic A, Im S will always be different at different critical points (in slightly
fancier words: we saw already for the Airy function that the Stokes rays form a set of measure zero).

However, it is interesting to explore what might happen when interpolating flows do exist. This is already
clear for the Airy function: at the critical points z = +1 we have Im §(£1) = ZF%Re A, so when A is
purely imaginary there can be and is a flow line connecting the two critical points, it is just the interval
[—1, 1]. However, when A = 0, S is trivial and not Morse, so we see that there are two rays, the strictly
positive and strictly negative imaginary axis in the complex A plane for which is an interpolating flow.
One calls these rays Stokes rays. So we see that there is a nontrivial structure in the complex A-plane
and further analysis of this situation leads to wall-crossing effects: as we cross a Stokes ray, the integer
coefficients 71 may jump, but the cycles defined by downward flow ‘jump’ too, as to keep the linear
combination C = n_1C_1 + ny1C41 constant. We shall not go into detail on this phenomenon here,
but refer to [9] for more discussion and references on this. Note that here we can still have interpolation
between critical of the same Morse index, as we do not have an obstruction to this due to supersymmetry
here.
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A NOTE ON CHERN-SIMONS THEORY

D.1 Some calculations in Chern-Simons theory

We collect here some calculations in Chern-Simons theory.

Extending the G-bundle on M x [0,1]. Letting tA,t € [0,1] be a connection on E — M x [0,1], we
can calculate:

d(CS(tA)) = dtr (tA NA(tA) + %tA AtA N tA)
= tr(d(tA) Ad(tA) + §3t2dt ANANANA

2
+§t3(dA/\A/\A+A/\dA/\A+A/\A/\dA))

= tr(d(tA) ANd(tA) + 22t NANANA 283 (dANAN A))
But we have for the curvature F;4 of tA

tr(FaAFa) = tr((d(tA) +tANLA) A (d(tA) +EtANEA))

tr (d(tA) Nd(tA) +d(tA) NEANEA + ANEANEANA(LA))

= tr(d(tA) Nd(tA) + £ (dtANA+HdA)ANANA
+PANAA (AN A+ HdA)))

= tr (d(tA) NA(EA) + 202t ANANANA+203dAN AN A)

from which we conclude that equation (??) holds.

The winding number. Let us first indicate how to show (7.1.4). Note that for g-valued 1-forms, we need to
be careful in using the cyclic property of the trace: there will be extra minus signs coming from switching
around the 1-forms. The rule we need the most is tr (ABC) = (—1)?tr (CAB) = tr (CAB) for A, B,C
g-valued 1-forms. We will leave wedges implicit and repeatedly use d(¢~!) = —g¢~'dgg™!. The first
term becomes

tr (A'dA’) = tr |(sBg™" —dgg~")d(gBg ™! —dgg ")
=tr Kngil - dggil) (ngg*1 +gdBg ' —gBd(g ') + dgd(gil)ﬂ
=tr[B2g 'dg + ¢BdBg ' + B¢ 'dg — b(g 'dg)?
— (§7'dg)*B — dgdBg™' — (g7'dg)*B + (dgg "))
=tr {BdB +2B%*(g'dg) —3B(g'dg)? — dgdBg ! + (d8871)3}
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The second term is

tr A® = tr[gBg ™! —dgg ")’ =tr[(gBg " —dgg ') (gB’g " — ¢Bg ldgg !
—dgBg~' + (dgg™")?)]
=tr(B> — B’g 'dg — B’ ldg +gBg '(dgg')? — g 'dgB’
+(g7'dg)* B+ (37'dg)*B — (dgg™')?)
—tr B>~ 3B%(3"dg) +3(g'dg)?B — (dgg™")’]

Hence we get that

tr (A’dA’ - §A’3> =tr (BdB + %133 — B(g'dg)? — dgdBg ! + ;(dgg—l)s)

%CS(B) +tr (dgBd(g™") — dgdBg™") + %tr (dgg_1>3
- %cs( ) —dtr (nggﬂ) L %tr (dgg*1)3

%CS( ) —dtr (—gBgldgg™") + % tr (dgg’l)B

4%(:5( ) —dtr (gBd(g ™)) + %tr (dgg*l)3 (D.1.1)

which is exactly equation (7.1.4).

Normalization of the trace. Let us now calculate the integral of the third term for G in the special case of
gauge theory on S, explicitly we want to show (7.1.5)

1 1) _ 1 3. _ijk -1 1
o /53 tr (dgg ) o d ye'* tr (E) 88 0i88 hkgg ) € 2nZ. (D.1.2)

By a theorem of Bott, any continuous mapping S> — G can be continuously deformed into a map
S3 — SU(2) C G for simple compact G that have an SU(2)-subgroup.

We may parametrize a point y = <y0,yi) € S3,i = 1,2,3 with (y0)2 + (yi)2 = 1, using the Pauli

matrices 01,07, 03
0 1 0 —i 1 0
o= (1 0) oy = (i 0) 03 = (0 _1> (D.1.3)

as generators for 51(2), we can write a gauge field ¢ as ¢(y) = y° — iy*o}.. We normalize the trace such
that tr (0’,'(7]') = 20, which amounts to just the standard trace. <(y) is just the identity map S8 —
SU(2), hence the integrand for this map must be a constant. Hence we can evaluate the integrand at a
special value of y, so we make the convenient choice y° = 1,/ = 0. We can then set:

g i=1 dig = —io; (D.1.4)
Then the integral reduces to
1 3, N\3.ijk
o d y(—i) e’ tr (oj0i0%) (D.1.5)
The trace evaluates to
1 1 5
e tr (giojor) = Ee'] tr [0y, 0] o) = Ee’]k - 2iejm tr (Om0y) (D.1.6)

= i€ iy 20, = 2i - —6 = —12i (D.1.7)
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Together with the volume of the 3-sphere fS3 d3y = 27, we find that

1

) 3
T s Py(—i)3e* tr (o,050¢) = (Saly —12i - 27 = 27t (D.1.8)
S
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The map g(y) maps S3 once onto SU(2) = S3. If we would have taken the nth power of this map, we
would have described 1 coverings of S3, which would multiply this result of a factor of 7. Most notably,
this fails for G that do not have an SU(2) subgroup, an example is SO(3). In that case, one obtains the
result that the above integral is actually 77, exactly half of our calculated result. This reflects the fact that

SU(2) is a double cover of SO(3).

The equation of motion. Writing in index notation, we derive (7.1.7)

k 3, ijk 2
Oles =0 <4n /Md xe’" tr (Aia]'Ak + 3AiAjAk)>
k . 2
Tarx / et <5AiajAk +Ai9j0 A+ § (0A;AjAL+ AidAjAr + AiAjd Ay)

/ Bxeltr ( 6A;0;Ar + 9jAR0A; + 3 3 ((SA [AjAx + SAALA; + SALAA; ))

= /M dBxell* tr (2(5A AL+ % (35A A Ak))
k .
- /M Pxel*tr (264 (3;A + AjA))

which gives the desired result. Here we used that the e-tensor obeys e//k = e/k = €kil and we suppressed
the group generators. However, in every step the gauge fields flip positions twice, which is compatible

with the cyclic property of the trace to get the generators in the right order.

D.2 A closer look at the Chern-Simons - WZW duality

Wess-Zumino-Witten theory describes maps ¢ : £ — G, where X bounds a 3-fold B (we can think of B
in our case one half of M after slicing it at ). The explicit form of the WZW action is

Swawlgl = £ / tr ‘168)(g‘18g)) 2i(nl/;tr(g‘ldg)3 (D.2.1)

where k € Z is an integer for exactly the same reasons in Chern-Simons theory. Here we used that
the field g can be extended to a field g : M — G, but this extension is not unique: two inequivalent
extensions will differ by a constant multiple of 277 in their action. The third term can be written as a
total derivative, so it only contributes a 2-dimensional term to the equations of motion. Solving these
equations of motion, one finds that there are two conserved currents

J(z) =kg~'og  J(z) = kg 'og. (D.2.2)

We can expand the currents as [(z) = J%(2)t%, J(Z) = J(2)*t", which satisfy the operator product
expansion

k(;ub ub]()
CEnEAE Ay ey

J(2)]" (w) = ... (D.2.3)

Using the identity dz(z — w)~! = 716%(z — w), this OPE is alternatively written as

krr

3] (2)J"(w) = 5‘”’8 62(z — w) + f6% (2 — w) ] (w). (D.2.4)
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This operator product expansion is equivalent to the Kac-Moody algebra. Consider now coupling the
Wess-Zumino-Witten theory to a background gauge field Az (it has no derivative terms in the action),
where for the moment set A; = 0. Then we can consider the partition function

Z(A) = (exp (-i / A‘Z‘]”)>. (D25)

The background gauge field sources the WZW currents, which means that we can compute correlators
of the currents by taking functional derivatives with respect to AZ. If we act with the flatness constraint
of Chern-Simons theory on Z(A), we find

A A = 2 ARIZ(A)

—% (602 + e al(z)) () exp( ! /Ad]d)> ia Az exp< /Ad]d> (D.2.6)

Taking now a functional derivative again and setting Az = 0, we obtain

(6%0z + £ AL(2)) (1°(2 eXP( dl Ad]d)

(69 + foteal(z))

AZZO

— 2o @ e (— 1 [ A ) ao+ e - w)(F@ e (—1 [ AT o
PR wyexp (< [ AL Dlag
= 0" (@) + R (2~ w) ((2)),

while the right-hand side becomes

0 ko aa 1
Sa)|  aneAeew (5 [44)

_ ko g L[ ady k a d L [
= 5P w)ep ([ A aco — Eopeaz@r @) exp (< [ AL )lace
= %825’1‘152(2 —w).

Putting it all together we find that

0=(J*(2)J4 (w)) + 7752 (z — w) (J°(z)) = kgazéaddz(z —w). (D.2.7)

which is exactly the operator product expansion for the WZW currents (D.2.4). We see that we can
identify the Wess-Zumino-Witten wavefunction as

Fyzw[Az] = (exp (— / AZJ) (D.23)

Turning on the gauge field A, completely analogous considerations hold for the opposite current | of the
theory. The JJ, J] OPEs are equivalent to the Ward identities for WZW correlation functions, which can
be expanded in a basis of conformal blocks. One can expand the full WZW partition function in terms of
conformal blocks as

Z(A,, As Z‘Pa [A.]¥4[As], (D.2.9)

which are then uniquely determined by the Ward identities [21]. We conclude that the Chern-Simons
flatness constraint is equivalent to the current OPE of WZW theory.
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D.3 Chern-Simons flow equations and instanton equations

We start from equation (8.1.7), the flow equation for Chern-Simons theory. Our goal is to show that it is
equivalent to the (anti-)self-duality equations of twisted A/ = 4 SYM. Writing (8.1.7) out in components,
we have

?:d(A—icp)—i-(A—i(l))/\(A—icp):F—id(i)—iA/\(P—iq)/\A—(p/\c[):F—iqu)—cp/\cp,

so the flow equation can be written, dropping wedges, as

dA  .d¢
ds —Hdis -

(cosa —isina) (F . — idAgb) . (D.3.1)

Separating real and imaginary parts we have

Z—[: = — s (cosa(F — P A p) —sinad 4¢) (D.3.2)
Z—f = #pr (sina(F — ¢ A ¢p) + cosad ) (D.3.3)

These equations can rewritten by considering them as defined on I X M, where s € I is the flow time
1-manifold. We extend the metric g on M to a metric g on I X M by simply adding a component gss = 1,
subsequently, we can extend the Hodge star *)s to a 4-dimensional Hodge star * on I X M. We can fix a
gauge in which the components Ag, ¢s vanish. Taking linear combinations of the flow equations gives

+ —
(F(4) - <P%4)> = u(Dgy))™, (F(4) - <P%4)> = —u "' (Dd))”, (D3.4)

where the subscript denotes 4-dimensional fields, D = d 4 is the 4-dimensional gauge-covariant deriva-
tive, the superscripts £ denote the self-dual and anti-self-dual parts and

_ 1—cosa u,1_1+coso¢

u= (D.3.5)

sin « sin «

The moment map extends easily to yig = d 4 * ¢, since we gauge-fixed ¢s = 0.

Let us now show that (D.3.4) is equivalent to (D.3.2). We write out the above equations in index notation
with i,j,k = 1,2,3 indices tangent to M and y,v = 0,1,2,3 indices tangent to I x M. We can then
decompose the 4-dimensional gauge fields

A= Agds + Aidx' = A,dx”, ¢ = psds + Pidx’ = Pdxt (D.3.6)

and consequently put F;; = % The covariant derivative is likewise decomposed as D = d4 = d4, +
da, = dsds +d4,. We drop the subscript (4) for convenience. We can first subtract the two equations
in (D.3.4), from which we get

«(F—¢?) = u(Dg)" +u~'(Dg)~
*(Fyy — @) = u(Dpppy)) ™ +u= 1 (Dpy) ™
sina * (Fyy — ¢py) = (1 —cos oc)(D[ygbV])Jr + (14 cosa)(Dp,¢y))
sina * (Fyy — ¢pv) = D[y — cosa * (D, ¢py))
sin a€yypo (FP7 — ¢f7) = Dy, ¢,) — cos aeypo (D7)

Here we repeatedly used the properties of (anti-)self-dual forms and abbreviated PPy = Puv- In terms
of e-symbols, we have that ) is represented by €g;j, so putting y = 0, we read off that the last line
then implies that

sin XEQjjk (ij — (P]k) = D[O(Pi] — COs DCGOijk(D[jgbk]) (D.3.7)
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Using the decomposition, we see that Djg¢;) = Do¢; = 00¢;, since Ag = 0, and we see after rearranging
we have

D[O(Pi] = sin zxe()ijk(ij - (P]k> + cos DCGOZ']'k(DU(Pk}) (D.3.8)
ao(Pi = *M (smzx(F(M) — (P(M) AN (P(M)) -+ cos aqu)(M)) (D.3.9)

which is equivalent to the second equation in (D.3.2). Note that by d4¢ we mean the spacial part of
the gauge covariant derivative. and that the subscript makes clear that the fields are the components
restricted to M. If we add, instead of subtract, the two equations we get the same result. The second
flow equation is obtained along similar lines: switching the factors of u and subtracting the two flow
equations one obtains

uH(F=¢")" +u(F—¢%)" = (Dp)" — (D¢)
(1+cosa)(F—¢*)" + (1 —cosa)(F — ¢?)~ = sina * (Do)
(F — ¢?) +cosa x (F — ¢*) = sina * (D¢)
(F — ¢?) = sina * (D) — cosa * (F — ¢?).

Now Fy; = dgA;, so in index notation, the Oi-component of the above equation becomes
doA; = —€gijk (cos w(FF — piky — sinDc(DUgbk]))
dpA = — *p (COS IX(F(M) — (P(M) A (P(M)) — Sinﬂéqu)(M)) . (D.3.10)

This is exactly the first equation in (D.3.2).



E

BIBLIOGRAPHY

In this section we give some pointers to the literature relevant to the material in this thesis. A lot of
the basic material on the toy models and mathematical point of view on supersymmetric QFT and gauge
theories can be found in [7]. More information on index theorems and more can be found, for instance,
in [4]. The canonical reference for conformal field theory, which we used in the appendix, is the Yellow
Book [21].

Topological field theory and topological strings were originally introduced by Witten in the 80s, see for
instance [54]. He introduced the twisting procedure and the A and B-model. The interpretation of super-
symmetry vacua in SQM in terms of Morse theory was another insight by Witten in [8]. Continuing the
connection, in the seminal paper [19], Witten showed the connection between Chern-Simons theory and
knot invariants. More details on Chern-Simons theory can be found in [55, 51, 50, 18, 56, 57]

The recent application of Morse theory to find exotic integration cycles was developed in the series
[12, 29], again pushed forward by Witten. He subsequently published his conjecture on Khovanov ho-
mology in [29]. Khovanov originally introduced the categorification of the Jones polynomial in 2000,
starting with [23]. An accessible introduction to Khovanov homology can be found in [58].

For symplectic geometry, Gromov-Witten invariants and Floer theory, a good reference is [13].

Background on instantons, solitons can be found in [59]. The basic reference for string theory and M-
theory is [2]. More information on the geometric Langlands program and S-duality can be found in
[17, 60]. The discovery of coisotropic branes is also due to Kapustin in [6]. A good start for mirror
symmetry is [7].
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